Как подключить 2 нагрузки с выдержкой времени на включение?

Блог пользователя himiks на DRIVE2. Изготовил плату для включения (выключения) двух нагрузок с одной кнопки. Спасибо Палычу CAMOKAT-BETEPAHA и Ваcилию76 vasilii76. Для чего это? В случае, если у вас заняты все кнопки в авто, а вам необходима еще одна кнопка. Делаем управление двумя нагрузками (потребителями) с одной нефиксируемой кн…

Как подключить 2 нагрузки с выдержкой времени на включение?

Одна кнопка — две нагрузки. Сборка и проверка устройства

Изготовил плату для включения (выключения) двух нагрузок с одной кнопки.
Спасибо Палычу CAMOKAT-BETEPAHA и Ваcилию76 vasilii76 .

Для чего это?

В случае, если у вас заняты все кнопки в авто, а вам необходима еще одна кнопка.
Делаем управление двумя нагрузками (потребителями) с одной нефиксируемой кнопки.

Короткое нажатие — срабатывает первая нагрузка. Повторное нажатие — выключает эту первую нагрузку.

Длительное нажатие (более 1 секунды) — включается вторая нагрузка. Выключение при повторном длительном зажатии.

Включениевыключение сопровождается звуковым сигналом.

Опирался на этот материал:
1) Одна кнопка — два выхода

Сделал печатную плату по картинке, срисовал у Василия76

Схему позже нарисовал

Изготовил печатную плату.

Запаял необходимые элементы. Проверил работопособность на столе.

Цвета проводов и назначение:
1) красный — питание схемы (+12В)
2) черный — минус
3) белый с голубой полоской — выход №1 (их два провода, один к кнопке, другой к реле1)
4) белый с черной полоской — выход №2 (их два провода, один к кнопке, другой к реле2)
5) коричневый (его не видно) — к кнопке. Будет переключать нагрузки

Позже соорудил еще чуток печаток, буду кнопки в авто переделывать на 2-е нагрузки. Их у меня всего 5 шт.

Собрал еще парочку, сделаю из одного устройства кнопку обогрева заднего стекла и обогрева зеркал. А вторую знакомый попросил для помпы и еще чего-то там.

ПС: Для подключения не хватает еще кусочка проводка, чтоб удлинить провод подсветки кнопки. Включение осуществляется в разрыв имеющейся проводки.

Цвета проводов и назначение:
1) красный с черной полоской — питание схемы (+12В)
2) черный с белой полоской — минус
3) зеленый — выход №1 (их два провода, один к кнопке, другой к реле1)
4) фиолетовый — выход №2 (их два провода, один к кнопке, другой к реле2)
5) синий — к кнопке. Будет переключать нагрузки

Переделка подсветки кнопок

Разобрал имеющиеся кнопки.

Нам для переделки подойдет на СМД компонентах, та что слева. Отличия их очевидны.

Выпаял платку, отпаял с нее все компоненты (они нам не нужны, кладем в коробочку).

Запаял RGB смд 5050 светодиод, и белый смд 3528. Цвета проводков соответствуют цветам светодиода.

С обратной стороны запаял драйвера тока NSI45020AT1G на 20мА на каждый канал светодиода. Пришлось заказывать с местного радиомагазинчика, 2-е недели ожидания.

Подробнее о переделке кнопки с картинками и отличным описанием смотрим у Дениса Коротких KorotkihDS в этой теме: RGB пересвет кнопок салона Калина (фотоотчёт)

Детали для сборки:
Attiny13а (so-8 wide)
пищалка (например, EMX-2T01P8)
транзистор BC817 (2шт)
транзистор BC857 (2шт)
резистор 1206 470 Ом
резистор 1206 1к Ом (2шт)
резистор 1206 1,5к Ом (2шт)
резистор 1206 1,6к Ом (можно от 1,5 до 4.7)
резистор 1206 4.7к Ом (2шт)
резистор 1206 20к Ом (2шт)
конденсатор 22мкФ. 16 или 25В
конденсатор 100нФ (2-3шт)
стабилитрон 5.1В (BZX84C5V1 корпус SOT23) или в любом другом корпусе
диод 1N4148 (2шт)

Подключил к проводке авто. Теперь кнопка при включении первой нагрузки светит красным, а при включении второй нагрузки — синим. Если обе нагрузки включены, то свет — фиолетовый получается. Пока зеркала не подключены, т.к. нет зеркальных элементов.

Для самостоятельной сборки предлагаю печатную платку:

Комментарии 48

Привет, аканал продажи данных дивайсов не налажен? Можно было бы например платы + заряженые кнапки продавать . Дело верное. Я бы приобрел !

Здравствуйте!
Повторяю вашу поделку. Запрограммировал, спаял плату. Стал проверять, микроконтроллер работает, как надо. Но на контактах выходов когда выключено, держится напряжение, как на входе. Убрал диоды, на 1 выходе напряжение стало 1,5вольта, на 2 выходе 3.5 вольта. Схему и детали использовал, как у вас. Не подскажете, почему так? И зачем стоят диоды после последнего транзистора на выходе?

программирование это круто -но столько деталек … дорого!
я проще реализовываю такое и до Десяти команд — просто использую к176ие8

согласен. надо в конкретной ситуации подходить со всех сторон

что значит до десяти команд реализовываю?

да что угодно — от фантазии зависит
— например Люстра в квартире — как правило от одного выключателя запитана — так вот простым коротким выкл/вкл и меняю режимы (ночник / 4 плафона / 7 плафонов / 4+7 / и тд разные комбинации)
— или подогрев авто кресел (max/norm/min/off) естественно с индикацией на самой кнопке

voronin76rus

программирование это круто -но столько деталек … дорого!
я проще реализовываю такое и до Десяти команд — просто использую к176ие8

тут деталек максимум на 1$ это для вас дорого?

У нас барыги дерут за каждый смд резистор от 50 руб за штуку, и дальше больше!
Теперь прикинь во что выходит эта штука

у радиолюбителя который будет собирать такие устройства обычно есть кассы резисторов, конденсаторов, стабилитронов и прочие ходовые детали, у меня например есть кассы 0402, 0603, частично 0805 и 1206, общим количеством около 25-30 тысяч штук по самым скромным подсчетам, это в сотни раз дешевле если брать оптом чем покупать по 50рэ за штучку, а жизнь она длинная, а пенсия еще длинее)) пригодятся, надеюсь к смерти их все куда нибудь впаять). Если у вас нету — попросите на первый случай знакомого радиолюбителя отсыпать вам с десяток нужных номиналов, и потихоньку собирайте свой клондайк, если вам действительно интересна эта тема. А вообще я не встречал где поштучно можно купить СМД резистор или конденсатор, как минимум десяток, и цена очень зависит от количества в одном и том же магазине. Резисторы 0402 я покупал по 100штук одного номинала, так как меньшее количество магазин не продавал, хотя и понимал что по 100штук большинства номиналов мне вряд ли пригодятся, но цены вполне нормальные за эту мелочь. Порезал по 20штук и в визитницу засунул, а остальные 80 закинул в ящик, пока дергаю по мере необходимости самые ходовые.

ну я так понимаю что контролер без таймера?

Таймер периодического включения нагрузки

Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.

Разновидности таймеров

Применение таймеров в быту сейчас стало достаточно распространенным. Поэтому такое устройство можно просто купить в магазине электротоваров. Чаще всего это многоканальные таймеры, позволяющие программировать включение – выключение нагрузки в определенное время суток, и даже с учетом дня недели.

Но иногда требуется таймер, работающий просто по алгоритму «работа – пауза». Включать его можно просто вручную, а вот время работы и паузы регулировать независимо друг от друга. Одним из примеров, когда может понадобиться именно такое реле времени, может служить «люстра Чижевского».

Немного истории

Люстра Чижевского это устройство для насыщения воздуха отрицательными ионами кислорода. Изобретатель люстры известный советский ученый Александр Леонидович Чижевский начал заниматься опытами по аэроионизации воздуха еще в 1922 году в одной из лабораторий Главнауки. Но, как часто случалось в то время, в 1942 году ученый был репрессирован и пробыл в ссылке в Караганде вплоть до 1950 года. Но свою работу Чижевский продолжал и там: сеансы аэроионотерапии в областной Карагандинской больнице помогли многим больным при заживлении ран. В 1958 году ученый вернулся в Москву, где до последних дней жизни занимался внедрением аэроионизации.

Кроме заживления ран, люстра Чижевского является прекрасным профилактическим средством, предотвращающим развитие многих заболеваний, а также повышает работоспособность, как умственную, так и физическую. В литературе было много споров о пользе или вреде люстры, и даже статей под названием «Люстра Чижевского своими руками».

Применять люстру Чижевского рекомендуется начиная с коротких сеансов, постепенно увеличивая их количество и время. Но, если люстра будет включена постоянно, концентрация аэроионов в воздухе может превысить оптимальную, что не совсем хорошо для здоровья. Управлять этой концентрацией можно просто включая и выключая устройство вручную, что, согласитесь, не очень удобно. Облегчить этот процесс поможет простейший таймер, выполненный всего на одной логической микросхеме.

Конечно, такой таймер может найти еще множество применений, когда требуется периодическое включение – выключение нагрузки. На рисунке 1 показана принципиальная схема таймера.

Рисунок 1. Таймер периодического включения нагрузки.

Собственно таймером в данном случае является генератор прямоугольных импульсов на элементах DD1.1…DD1.4. Скважность импульсов может регулироваться, причем независимо устанавливается как время импульса, так и время паузы.

Питание всего устройства осуществляется от бестрансформаторного источника питания с балластным конденсатором С1 и выпрямительным мостом VD1. Транзистор VT1 используется в качестве стабилитрона. Напряжение стабилизации в этом случае около 10 В – микросхемы серии К561 работоспособны в диапазоне напряжения питаний 3…15 В. Поэтому, напряжения 10 В вполне достаточно для нормальной работы схемы в целом.

Нагрузка включается симистором VS1, который, в свою очередь, включается маломощной симисторной оптронной парой U1.1. Последняя содержит встроенную схему определения перехода через нуль сетевого напряжения. Поэтому коммутационных помех в сети не будет. Именно этим обстоятельством объясняется отсутствие в схеме входного сетевого фильтра.

Для управления оптронной парой служит ключевой каскад, выполненный на транзисторе VT2. В его коллекторную цепь включен светодиод оптронной пары U1.1 и светодиод HL1, индицирующий включение нагрузки. Резистор R10 ограничивает ток через светодиоды.

Работает схема следующим образом. В исходном состоянии все конденсаторы, естественно, разряжены. При включении питания через резисторы R3 и R4 начинает заряжаться конденсатор С3. Пока он не зарядился, на входе элемента DD1.1 логический нуль, а на выходе, естественно, единица. Такое состояние приводит к тому, что на выходе элемента DD1.4 также логическая единица, которая открывает транзистор VT2, через его переход коллектор – эмиттер включается светодиод оптрона U1.1. Последний включает симистор VS1, подключающий нагрузку. Также засвечивается светодиод HL1, сигнализирующий о включении нагрузки. Это положение таймера называется «Работа».

В таком положении генератора на выходе элемента DD1.2 напряжение логического нуля, что не позволяет заряжаться конденсатору С4.

Конденсатор С3, не следует об этом забывать, уже заряжается от момента включения питания. Когда напряжение на нем достигнет уровня логической единицы, на выходе логического элемента DD1 появится низкий уровень, а на выходе элемента DD1,3 высокий. Такое состояние схемы приводит к закрыванию транзистора VT2, а, следовательно, к отключению нагрузки.

Конденсатор С4 начнет заряжаться через элемент DD1.3 и резисторы R6…R8. При этом достаточно быстро разрядится конденсатор С3 через диод VD2, резистор R6, логический элемент DD1.2, находящийся в это время в состоянии логического нуля на выходе.

Когда конденсатор С4 зарядится, на выходе элемента DD1.2 установится уровень логической единицы. Это приведет к установке низкого уровня на выходе DD1.3. Поэтому через элемент DD1.4 откроется транзистор VT2, нагрузка будет подключена. Также через элемент DD1.3 и резисторы R6…R8 разрядится конденсатор С4.

Кроме этого появление логической единицы на выходе элемента DD1.2 предотвращает разряд конденсатора С3 через диод VD2 и резистор R5. с зарядкой конденсатора С3 начинается новый цикл работы таймера.

Длительность времени работы и паузы устанавливается с помощью переменных резисторов R4 и R7 соответственно. При указанных на схеме номиналах ее можно изменять в пределах 3…30 минут. При этом время паузы от времени работы не зависит, поскольку цепи зарядки конденсаторов разные. Собранное из исправных деталей устройство наладки не требует, кроме установки желаемого времени работы и паузы.

Читайте также  Схема подключения электросчетчиков в коммунальной квартире

Если все же наладка потребуется, следует помнить о том, что устройство не имеет гальванической развязки с сетью. Поэтому лучше в случае наладки пользоваться трансформатором безопасности. При этом в качестве нагрузки можно использовать обычную осветительную лампу мощностью 25…100 Вт.

Несколько слов о деталях. Номиналы деталей в основном указаны на принципиальной схеме. Все постоянные резисторы типа МЛТ или импортные, скорее всего китайские, переменные СПО, СП4-1. Конденсатор С1 на рабочее переменное напряжение не менее 250В, такие обычно применяются в сетевых фильтрах, либо типа К73-17 на рабочее напряжение не менее 400В. Электролитические конденсаторы С3 и С4 с малым током утечки, иначе выдержки будут нестабильны. Тут тоже лучше подойдут импортные конденсаторы, например марки JAMICON.

Если мощность нагрузки не превышает 400Вт симистор VS1 можно устанавливать без радиатора.

Транзистор КТ 816Б можно заменить на стабилитрон Д 815Б. При этом его катод следует подключить к + конденсатора С2.

Конструкция

Прибор можно выполнить в пластмассовом корпусе подходящего размера, таких сейчас в продаже предостаточно. Не следует забывать о том, что конструкция имеет бестрансформаторное питание, то есть находится под напряжением сети. Поэтому ручки переменных резисторов также лучше сделать из пластмассы.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Схемы подключения реле времени

Реле времени — повсеместно применяющиеся устройства, как в бытовых целях, так и на крупных промышленных предприятиях. Приборы выпускаются механического типа, представляющие собой простейшие конструкции, и электронными, оснащенными сложными системами управления, программируемыми пользователем.

Область применения

Реле времени – это устройство, предназначенное для включения/выключения приборов, управления процессами с определенным промежутком времени.

Такое оборудование довольно часто используются в промышленности для управления производственными процессами без участия человека. Реле не менее часто применяется в быту. Оно может использоваться для систематического полива, включения в определенное время освещения и т. д.

Электронное микропроцессорное реле времени модели PCR-513 может программироваться самим пользователем

Виды и классификация

Такие приборы, как реле времени разделяются на:

  • блочные;
  • модульные;
  • встраиваемые.

Блочные отличаются спецификой процесса установки, требующим индивидуального запитывания от сети. Встраиваемые не нуждаются в организации отдельного питания, так как чаще всего используются как вспомогательные элементы в более сложных схемах. Модульные реле времени также не подключаются к отдельной питающей линии. Крепление модульных реле производиться на DIN – рейку.

Также реле времени могут быть:

  • электромагнитными;
  • пневматическими;
  • электронными;
  • моторными.

Для использования в быту в основном применяются электронные или электромагнитные реле. Это объясняется тем, что они максимально эффективны в работе, а также их стоимость невысока и доступна для любого потребителя.

Читайте также статью ⇒ Подключение реле максимального тока.

Преимущества и недостатки устройства

У электронных реле преимущественным качеством является то, что они с высокой точностью выполняют свои функции. Из отрицательных качеств можно отметить только то, что для них требуется точность в программировании, интервал времени, который может устанавливаться, значительно меньше чем у электромеханических. Также стоит отметить и достаточно высокую стоимость.

Основными достоинствами электромагнитных реле являются низкая цена, они не требуют постоянного обслуживания, регулярного программирования, изменения настроек. Недостатком таких устройств является ограниченный ресурс работы, а также не слишком хорошая работа с постоянным током.

Реле времени на современном рынке представлены в широком разнообразии типов и моделей

Принцип работы

Принцип работы реле времени заключается в следующем.

Так как это приборы, которые производят подсчет времени, в каждом из них имеется таймер, который выставляется на определенный период. Поэтому необходимо выставить таймер на требуемое время включения или выключения. Таймер вмонтирован в лицевую часть прибора. В зависимости от заданных характеристик этот прибор будет отключать сеть от питания и в определенное время включать ее. Такой цикл будет продолжаться до тех пор, пока реле не будет переведено в состояние покоя.

Реле времени независимо от его исполнения и характеристик может выставляться от одной секунды до 999 часов.

Читайте также статью ⇒ Подключение указательное реле.

Технические характеристики

Все приборы, которые используются в электросети, должны своими характеристиками соответствовать ее параметрам, то есть должны выполняться условия при которых их работа будет стабильной.

Независимо от типа и конкретной модели, реле времени характеризуются следующими параметрами:

  • напряжение, при котором этот прибор будет работать стабильно;
  • коммутирующий ток, определяющий ток управления прибора;
  • износостойкость, определяющаяся количеством включений или выключений и подходящий больше для электромагнитных реле;
  • тип защиты;
  • количество контактов;
  • мощность устройства, указывающая, на какую максимальную нагрузку этот прибор может коммутировать без подключения контактора.

Исходя из этих данных, можно подобрать прибор с нужными характеристиками для определенных параметров обслуживающейся электросети.

Как читать маркировку

При маркировке таких приборов производителя стараются максимально упростить читаемость. На корпусе изначально указывается фирма производитель и модель устройства. Также указывается напряжение, подходяще для нормальной работы прбора. В большинстве случаев это 220 В.

Также помечается, для работы при какой величине и типе тока (постоянном или переменном) подходит устройство. На приборе также должно быть указан максимальный ток нагрузки для конкретного прибора.

Практически у всех реле времени присутствует маркировка выводов и обозначение подключения ноля и фазы.

Анализ производителей

Реле времени изготавливаются множеством производителей, заводы которых расположены по всему миру. В таблице ниже приведены наиболее популярные в нашей стране модели с указанием производителей и типа крепления устройства.

Модель Страна производитель Название фирмы Крепление
РВЦ-10/D Украина УКР РЕЛЕ DIN рейка
TR4N 4CO Польша Relpol DIN рейка
TM M1 Италия LOVATO Electric DIN рейка
IO 1080/IO Италия Perry DIN рейка
LT4H-AC240VS Малайзия Panasonic На панель

Схемы подключения реле времени

Для подключения реле времени не используются сложные схемы. При его установке важно знать, какую нагрузку оно будет коммутировать.

Такая схема позволяет выполнять различные операции путем включения/выключения реле в штатном режиме

Представленная выше схема подключения используется в большинстве случаев для домашнего использования. Такая схема обеспечивает стабильную работу прибора. Единственным недостатком является то, что реле времени может подключаться только на одну линию с небольшой нагрузкой. Например, уличное освещение или полив газона.

Схема подключения реле времени к сети с электроприборами со значительной нагрузкой

Схема с контактором используется в тех случаях, когда необходимо отключать более мощную нагрузку. Ее применение в быту также можно часто встретить. В ней роль выключающего устройства более мощной нагрузки исполняет контактор. Такая схема может контролировать, например, работу асинхронного двигателя. Она также применяется, если необходимо с помощью маломощного реле времени коммутировать более мощную нагрузку.

Схема подключения реле времени марки ERF-09 к трехфазной сети через контактор

Также реле времени можно подключать и в трехфазной сети. Схема, которая представлена выше наглядно это демонстрирует. Она применяется в местах с трехфазным напряжением. Основным выключающим устройством служит контактор работу, которого контролирует реле времени.

Читайте также статью ⇒ Реле напряжения.

Пошаговая инструкция по установке

Для того чтобы самостоятельно подключить реле времени необходимо определиться, в какой сети будет происходить монтаж. Она может быть однофазной или трехфазной. Также нужно заранее знать, что будет коммутировать этот прибор, то есть какую нагрузку требуется отключать или включать.

Исходя из этих данных, нужно приобрести устройство с нужными характеристиками, или же любой доступный, но в комплекте с ним также необходимо приобрести контактор.

Совет №1: Перед монтажом реле времени требуется обесточить всю электросеть для безопасного проведения работ. Это делается с помощью вводного автомата.

Реле времени устанавливается после счетчика электроэнергии. На следующем этапе с помощью паспортных данных прибора необходимо определить, где у него вход и выход. Вход — это клеммы, к которым требуется выполнять присоединение провода. Выход — это клеммы, от которых будет выходить коммутирующее напряжение.

Непрерывное импульсное реле времени на 16 А часто используется в домашнем хозяйстве

Совет №2: Пред установкой также требуется проверить прибор на работоспособность. Это необходимо сделать до отключения электричества.

Для этого к прибору необходимо подключить шнур с вилкой по заданной схеме и выставить минимальное время срабатывания. С помощью тестера проверяется наличие напряжения на контактах выхода.

Перед подключением реле времени необходимо надежно установить. У большинства этих приборов крепление производиться на DIN-рейку. После установки проводится подключение. Натяжение болтов должно быть максимальным, так как при плохом контакте прибор будет нагреваться и может быстро выйти из строя, или что еще хуже может быть причиной пожара.

Аналоги реле времени

Подбор аналогичных устройств осуществляется по специальной таблице, имеющейся на сайте каждого производителя реле времени. Например, реле ВС10-38 соответствует прибор РСВ17-3. Или устройство РКВ 11-43-11 успешно заменит модель РП21М-003В1.

Ошибки при установке

Основной ошибкой является подключение реле времени к приборам со слишком большой нагрузкой, например, к электрокотлу. Для управления отопителем обязательно требуется подключение реле через магнитный пускатель, соединяющийся с котлом.

Также не менее часто монтаж реле времени осуществляют в помещениях с климатическими условиями, не подходящими для нормальной эксплуатации устройства. Температура должна находиться в диапазоне -20 — 50°С при влажности не выше 80%.

Схемы управления двигателями в функции времени

Этот вид управления применяется тогда, когда все переключения в схеме электродвигателя осуществляют в определенные моменты времени, например при автоматизации процесса пуска электродвигателей без контроля частоты вращения или тока. Длительность интервалов обусловлена и может регулироваться уставками реле времени.

Управление в функции времени получило наибольшее распространение в промышленности из-за простоты и надежности серийно выпускаемых электромагнитных и электронных реле времени .

Так, из рис. 1, а и б видно, что замыканием контакта К линейного контактора в цепь якоря включается все сопротивление реостата, равное R1 + R2 + R3, а включение секций пускового сопротивления может происходить через определенные интервалы времени t1, t2 и t3 при определенных частотах вращения двигателя n1, n2, n3 и при снижении пускового тока до заданного значения I2. Интервалы времени подбираются так, чтобы при каждом очередном закорачивании сопротивления ток двигателя не превышал бы допустимого I1.

При разгоне двигателя от n= 0 до n1 ток убывает до I2 в результате роста противоэлектродвижущей силы. Через промежуток времени t1 замыкается контакт К1, шунтирующий сопротивление R1, что вызывает уменьшение сопротивления реостата до R2+R3, новое увеличение тока до I1 и т. д. По окончании пуска двигатель разгоняется до номинальной частоты вращения, пусковой реостат полностью выведен.

Читайте также  Схема подключения испытательной коробки с трансформаторами тока

Рис. 1. Схемы управления двигателями в функции времени: а — пускового реостата двигателя постоянного тока, б — пусковая диаграмма

Рассмотрим некоторые схемы управления двигателя в функции времени.

При управлении асинхронным двигателем с фазным ротором в функции времени (рис. 2) выдержка времени, необходимая для закорачивания отдельных ступеней пускового реостата, обеспечивается маятниковыми реле времени, число которых равно числу ступеней. Работа схемы осуществляется следующим образом.

Рис. 2. Схема управления в функции времени асинхронного двигателя с фазным ротором

При нажатии на кнопку SB1 получает электропитание катушка линейного контактора КМ, включающего статор двигателя в сеть. Пусковой реостат при этом введен полностью. Вместе с контактором включается реле времени КТ1, которое через заданный интервал времени замыкает контакт в цепи катушки контактора КМ1.

Контактор срабатывает и замыкает первую секцию пускового реостата ротора. При этом включается реле времени КТ2, которое замыкает с замедлением свои контакты и включает катушку КМ2 и реле времени КТЗ. Контакты контактора КМ2 закорачивают вторую ступень КМ2 пускового реостата. Далее с замедлением времени срабатывает контакт реле КТЗ, включающий катушку КМЗ, которая закорачивает последнюю ступень пускового реостата КМЗ, и двигатель продолжает работать в дальнейшем как с короткозамкнутым ротором.

Останов двигателя производят кнопкой SB, а при перегрузках двигатель отключается расцепителями автоматического вводного выключателя QF. При этом отключается линейный контактор, его блок-контакт КМ и все контакторы ускорения и реле времени без выдержки времени. Схема готова к следующему пуску.

Для пуска вхолостую асинхронного двигателя повышенной мощности с переключением обмотки статора со звезды на треугольник можно использовать схему рис. 3. Переключение в этой схеме выполняется автоматически в функции времени. Нажатием кнопки SB2 обмотку статора включают в сеть контактором КМ. Одновременно подключаются к сети реле времени КТ и катушка KY, соединяющего обмотку статора звездой при помощи трех замыкающих контактов в силовой цепи.

Рис. 3. Схема управления в функции времени асинхронного двигателя переключением со Y на Δ

Двигатель включается и разгоняется при пониженном напряжении. Через заданный промежуток времени реле КТ выключает контактор KY и включает катушку контактора КΔ соединяющего обмотку статора треугольником. Так как в цепи катушки КΔ находится блок-контакт KY, включение контактора КΔ не может произойти раньше выключения контактора KMY.

Ступенчатый пуск многоскоростных асинхронных двигателей является более экономичным и выполняется в функции времени. Рассмотрим пример ступенчатого пуска двухскоростного однообмоточного двигателя (рис. 4). Обмотка статора переключается с треугольника на двойную звезду с удвоением частоты вращения.

Рис. 4. Схема управления в функции времени ступенчатого пуска асинхронного двигателя

Контактором КМ двигатель включается на первую ступень частоты вращения, а контакторами КМ2 и КМ1 на вторую. Для включения двигателя на первую частоту вращения нажатием кнопки SB2 включается катушка контактора КМ и его силовые контакты КМ в главной цепи. Обмотка статора, соединенная треугольником, включается в сеть. Катушка реле времени КТ находится под напряжением, а ее замыкающий контакт (в цепи катушки КМ) замкнут.

Ступенчатый пуск двигателя на вторую частоту вращения выполняется при помощи промежуточного реле К, цепь которого замыкается пусковой кнопкой SB3. Замыкающие контакты К шунтируют обе пусковые кнопки, а размыкающий контакт К отключает реле времени КТ. Замыкающий контакт КТ в цепи катушки КМ отключается с замедлением при возврате, поэтому катушка КМ в первый период пуска оказывается замкнутой, а двигатель включается на первую частоту вращения.

Блок-контакт КМ в цепи катушек КМ2 и КМ1 размыкается. Эти катушки отключены также размыкающим контактом КТ, который срабатывает с замедлением при возврате. Через заданный промежуток времени замыкающий контакт КТ отключит катушку КМ, а его размыкающий контакт включит катушки контакторов второй частоты вращения КМ1 и КМ2. Их главные контакты в силовой цепи переключат обмотку статора на двойную звезду и включат ее в сеть.

Следовательно, двигатель сначала разгоняется до первой частоты вращения, а затем автоматически переключается на вторую частоту вращения. Отметим, что предварительное соединение обмотки статора на двойную звезду и последующее включение ее в сеть выполняется сначала включением двух замыкающих силовых контактов КМ2, а затем трех замыкающих главных контактов КМ1. Такая последовательность включения достигается тем, что катушка КМ1 включается на напряжение через замыкающий блок-контакт КМ2. Останов двигателя выполняется нажатием кнопки «Стоп», обозначенной на схеме буквой SB1.

На рис. 5 изображена схема автоматического пуска двигателя постоянного тока параллельного возбуждения в функции времени. Включением автоматического выключателя QF двигатель подготавливается к пуску. Ток течет по цепи, состоящей из катушки реле времени КТ1, якоря двигателя М и двух ступеней пускового реостата R1 + R2.

Рис. 5. Схема управления в функции времени двигателя постоянного тока параллельного возбуждения

Вследствие большого сопротивления катушки реле КТ1 ток в этой цепи весьма мал и никакого действия на двигатель не оказывает, но само реле срабатывает и его размыкающий контакт в цепи контактора КМ1 размыкается. В обмотку второго реле времени КТ2, включенную параллельно сопротивлению R1, ответвляется столь малый ток, что включиться оно не может. Обмотка возбуждения LM двигателя также оказывается включенной.

Пуск двигателя выполняется нажатием кнопки SB2. Включаются при этом контактор КМ и его контакт в цепи якоря двигателя. Большой пусковой ток ограничивается двумя ступенями реостата R1 и R2. Часть этого тока ответвляется в катушку реле КТ2, и оно, срабатывая, размыкает свой контакт КТ2 в цепи контактора КМ2. Одновременно с замыканием цепи якоря М рабочий контакт контактора КМ закорачивает катушку реле КТ1.

После установленного промежутка времени при возврате реле КТ1 замкнет свой контакт КТ1 в цепи контактора КМ1. Этот контактор своим рабочим контактом KM1 закоротит первую ступень R1 пускового реостата и обмотку реле времени КТ2. С замедлением при возврате его рабочие контакты КТ2 включат контактор КМ2, который своими рабочими контактами КМ2 закоротит вторую ступень R2 пускового реостата. На этом пуск двигателя заканчивается.

При нажатии на кнопку SB1 контактор КМ обесточится и отключит свой главный контакт в цепи якоря. Якорь остается под напряжением, но оказывается включен последовательно с обмоткой реле КТ1, благодаря чему через него проходит незначительный ток. Реле КТ1 сработает, разомкнет свой контакт в цепи контакторов КМ1 и КМ2, они отключатся и разомкнут свои контакты, закорачивающие сопротивления R1 и R2. Произойдет останов двигателя, но его обмотка возбуждения остается подключенной к сети и двигатель тем самым подготовлен для следующего пуска. Полное отключение двигателя выполняют выключением автоматического вводного выключателя ВВ.

Динамическое торможение двигателей также выполняется в функции времени. Для динамического торможения, например асинхронного двигателя, обмотка статора отключается от сети переменного тока и по одной из схем, показанных в табл.1, подключается к источнику постоянного тока. В лесной и деревообрабатывающей промышленности постоянный ток получают от специальных полупроводниковых выпрямителей. В этом случае отпадает необходимость в специальном источнике постоянного тока.

При включении обмотки статора по одной из схем (см. табл. 1) к выпрямителю в обмотке создается неподвижное в пространстве магнитное поле. В неподвижном поле по инерции продолжает вращаться ротор двигателя. В роторе двигателя при этом будут создаваться переменная ЭДС и ток, который будет возбуждать переменное магнитное поле. Переменное магнитное поле ротора при взаимодействии с неподвижным полем статора создает тормозной момент. При этом запасенная кинетическая энергия ротором и исполнительным механизмом превращается в цепи ротора в электрическую энергию, а последняя — в тепловую.

Тепловая энергия рассеивается из цепи ротора в окружающую среду. Выделение тепла в роторе будет нагревать двигатель. Количество выделенного тепла зависит от тока в обмотке статора при питании ее постоянным током. В зависимости от принятой схемы включения обмотки статора при питании ее постоянным током отношение тока к фазному току статора будет различным. Соотношения этих токов для различных схем включения показаны в табл. 1

Схема динамического торможения асинхронного двигателя показана на рис. 6.

Простое реле времени с задержкой включения

17 Июн 2014г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. Совсем недавно возникла необходимость в реле времени с задержкой включения, через которое планировалось питать вытяжные вентиляторы в туалете и ванной комнате. Идея заключалась в том, чтобы зря не гонять вентиляторы если находишься в указанных помещениях менее минуты: здесь и экономия электроэнергии и меньший износ деталей вентилятора.

Покупать реле выходило дороговато, а в интернете схему с нужными параметрами не нашел. Поэтому пришлось заняться разработкой схемы реле времени самостоятельно, после чего на свет родилась вот такая простенькая конструкция. Причем такое реле может собрать любой начинающий радиолюбитель всего за один день.

Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками.

1. Принципиальная схема реле времени с задержкой включения.

Реле времени содержит 12 деталей и состоит из двух частей: узла питания и узла реле времени.

Узел реле времени собран на интегральном таймере DA1 и реле KL1. Если узел питания убрать, то узел реле времени можно использовать для включения нагрузки на напряжение питания 12 Вольт, например, включение магнитолы, света или подсветки в салоне автомобиля.

Устройство работает так: при включении выключателя SA1 запускается счетчик таймера DA1 и с этого момента начинается отчет времени задержки, по истечении которого на выходе таймера DA1 формируется сигнал, включающий реле KL1, которое своими контактами KL1.1 включает вытяжной вентилятор.

Узел питания собран по бестрансформаторной схеме с гасящим конденсатором С3. Резистор R2 служит для ускорения процесса разрядки конденсатора С3 при выключении устройства. Напряжение после конденсатора С3 выпрямляется диодами VD4 и VD5 и стабилизируется стабилитроном VD3. Конденсатором С2 сглаживаются пульсации выходного напряжения, которое составляет 12 Вольт.

На интегральном таймере NE555 (отечественный аналог КР1006ВИ1) собран узел задержки включения реле. Узел задержки представляет схему одновибратора, управляемого по цепи питания.

В момент подачи питания таймер DA1 начинает отчет времени, по истечении которого на выходе (вывод №3) формируется положительный импульс выходного напряжения, включающий реле KL1, которое замыканием своих контактов KL1.1 подает питание на вытяжной вентилятор.

За счет того, что таймер NE555 обеспечивает на выходе ток нагрузки до 200mA, не пришлось устанавливать транзистор для управления выходным реле KL1.

Время задержки включения реле задается емкостью электролитического конденсатора С1 и величиной сопротивления резистора R1. При указных номиналах этих деталей на принципиальной схеме время задержки составляет 70 секунд.

Диод VD1 устраняет влияние возможных выбросов напряжения питания таймера в течение отчета времени задержки, а диод VD2 служит для надежного срабатывания реле KL1. Время задержки в секундах рассчитывается по формуле: Т = 1,1*R1*C1.

2. Конструкция и детали.

Все детали реле времени размещены на печатной плате размерами 84х29 мм, которая вмонтирована в корпус вентилятора.

Печатная плата рассчитана на установку постоянных резисторов типа МЛТ или на аналогичные импортные. Времязадающий резистор R1 составлен из резисторов 1МОм и 510 кОм мощностью по 0,125 Вт и включенных последовательно. Резистор R2 мощностью 0,5 Вт и сопротивлением 470 кОм.

Читайте также  Как выполнить подключение массажера без аккумулятора от адаптера?

Постоянный конденсатор С3 может быть емкостью от 0,68 до 1,0 микрофарад и напряжением не менее 400В. Времязадающий электролитический конденсатор С1 емкостью 47 микрофарад и напряжением 15В, а С2 емкостью 220 микрофарад и напряжением не менее 25 Вольт.

В конструкции использованы импортные диоды типа 1N4007. Можно устанавливать любые выпрямительные диоды, рассчитанные на ток 1 Ампер и напряжение не менее 300 Вольт. Стабилитрон VD3 с напряжением стабилизации 12 В. Обмотка реле KL1 на напряжение 12 В, а контакты KL1.1 должны коммутировать напряжение 220 В.

При исправных деталях и правильном монтаже реле времени начинает работать сразу и в налаживании не нуждается. Реле подключается параллельно лампе туалета или ванной комнаты в точках 1 и 2, указанных на схеме. Чтобы в процессе налаживания схемы не ждать полторы минуты, уменьшите сопротивление резистора R1 до 100 кОм.

Вы можете сделать свой чертеж печатной платы, используя материал этого видеоролика, в котором показан процесс, начиная от компоновки деталей на плате и заканчивая рисованием дорожек. Посмотрев этот видеоролик, Вы сможете составить чертеж печатной платы практически для любой конструкции такой сложности.

В этом ролике показан процесс подготовки печатной платы: сверление отверстий, нанесение рисунка дорожек, травление дорожек. Далее идет распайка деталей на плату и монтаж реле времени в корпус вытяжного вентилятора.

Как Вы уже поняли, это реле времени с задержкой включения универсально, и поэтому его можно приспособить под любые нужды. Также можно ознакомиться со схемой и конструкцией реле времени с задержкой выключения, материал которой для публикации на странице сайте предоставил один из читателей.

Как подключить реле времени: циклическое, механическое и электронное

Известно множество электрических приборов и образцов промышленного оборудования, отличающихся прерывистым циклом эксплуатации. Они включаются на определенное время, по истечении которого требуется снять с них электрическое напряжение. Владельцу приходится постоянно отвлекаться, следя за подключенными к источнику изделиями. Выполнять эту функцию могут современные реле времени, позволяющие автоматически отключать нагрузку от сети по истечении фиксированного временного промежутка (его называют выдержкой). Задать его может сам пользователь, заранее вычислив нужный момент выключения потребителя.

  1. Что такое реле времени
  2. Алгоритмы работы, функциональные диаграммы, условные обозначения
  3. Диаграммы срабатывания
  4. Обозначения контактов на схемах
  5. Виды реле
  6. Недельный цифровой таймер
  7. Настройка электронно-механических аналоговых реле
  8. Регулировка приборов с цифровой шкалой
  9. Подключение в схему управления

Что такое реле времени

Реле времени предназначено для отключения/включения питания через определенные временные периоды

Временное реле представляет собой электромеханическое (электронное) устройство, основное назначение которого состоит в автоматическом отключении нагрузки с некоторой задержкой. Приборы этого класса широко применяются в электросетях промышленных установок, позволяя управлять режимами их работы без помощи человека. Кроме того, реле времени используются в быту, обеспечивая своевременное снятие напряжения 220 Вольт с подключенных через них приборов. В качестве таких нагрузок могут использоваться:

  • бытовые осветители любого типа;
  • образцы климатического оборудования;
  • системы вентиляции и другие устройства.

Использование современных приборов с временной задержкой позволяет существенно снизить энергопотребление и облегчить жизнь рядового человека.

Первые образцы – механические прототипы этих устройств – были разработаны еще в середине XIX века. Они управляли включением и выключением линий развивающейся тогда телеграфной связи. С тех пор эти изделия существенно усовершенствовались, их функциональность заметно возросла. При этом принцип работы таких приборов остался прежним: спустя заданный промежуток времени срабатывает исполнительное устройство, после чего напряжение питания автоматически снимается с нагрузки или подается на нее. В системах управления промышленным оборудованием коммутация контролируемых цепей осуществляется по определенному алгоритму, задаваемому путем программирования электронных реле.

Алгоритмы работы, функциональные диаграммы, условные обозначения

Функциональная схема двухканального реле времени

В современных программируемых устройствах предусматривается сложный алгоритм работы, включающий в себя временные паузы и циклически повторяющиеся интервалы. Различают следующие схемы функционирования реле времени:

  • простая задержка момента включения;
  • после подачи питания нагрузка подключается, но через заданное программой время напряжение с нее снимается;
  • то же что и в предыдущем случае, но отключение происходит с некоторой задержкой.

Еще одна схема предполагает более сложный цикличный режим работы устройства. Для его понимания следует уточнить порядок включения и отключения нагрузки. Он выглядит так:

  1. После подачи питание поступает по назначению лишь спустя некоторый временной промежуток.
  2. В течение заранее заданного интервала линия остается подключенной к сети.
  3. Происходит выключение и выдержка паузы, равной ее длительности при подаче питания.
  4. Нагрузка вновь подключается на то же время, что и в первый раз.
  5. Последовательность этих действий продолжается вплоть до полного снятия питающего напряжения.

При исследовании алгоритмов срабатывания реле времени и особенностей его применения потребуется ознакомиться с одной из важнейших характеристик прибора, представленной в виде функциональной диаграммы.

Диаграммы срабатывания

Диаграммы работы реле времени

Под этой характеристикой понимаются графические эпюры, описывающие состояние реле времени в различные моменты времени. При знакомстве с ними весь процесс коммутаций представляется в наглядном виде.

Особенно четко различим на диаграммах циклический характер процессов, наблюдаемых при работе устройств по сложному алгоритму. Указанные на них промежутки времени, как правило, задаются самим пользователем. С другой стороны, известны образцы устройств, в которых моменты отключения и подключения нагрузки корректировке не подлежит. Как фиксированный параметр, они обычно указываются в паспорте изделия. Чаще всего – это времязадающие приборы специального назначения, устанавливаемые в защитных цепях промышленных установок.

В каждом отдельном образце реле времени предусматривается сразу несколько алгоритмов работы, выбираемых на усмотрение пользователя. Внешний вид функциональных диаграмм приводится на корпусе изделия, там же можно ознакомиться с расположением его контактов.

Обозначения контактов на схемах

Графическое обозначение контактов

При выборе реле времени важно научиться разбираться не только в функциональных диаграммах срабатывания, но и в схеме расположения его рабочих контактов. Среди них выделяются следующие виды контактных групп:

  • одна из них в нерабочем положении всегда разомкнута;
  • другая группа контактов в нормальных условиях находится в замкнутом состоянии;
  • третья разновидность имеет нейтральное положение.

Для понимания характера срабатывания реле на схемах они обозначаются специальными значками в виде полуовалов, отрезков прямых линий и усеченных параллелей.

Виды реле

По способу подключения к действующей электросети все релейные устройства подразделяются на следующие классы:

  • приборы блочного типа;
  • переключатели, встраиваемые непосредственно в электронную схему;
  • модульные конструкции.

Устройства блочного типа выполняются в виде монолитного переходника, втыкаемого непосредственно в розетку. Их контакты напрямую подключаются к фазе и нулю коммутируемой цепи. Встраиваемые образцы не нуждаются в стороннем источнике питания, так как работают в составе сложных электронных схем.

Модульные реле времени крепятся на дин рейке в распределительном шкафу и подключаются к расположенной рядом нулевой и фазной шине. В соответствии с особенностями конструкции конкретного исполнительного механизма все известные образцы реле имеют следующие исполнения:

  • электромагнитного типа;
  • приборы, выполненные на основе электронной схемы;
  • похожие на заводные механизмы пневматические и электромеханические устройства (последние по внешнему виду напоминают часы).

В частной практике широко применяются приборы электронного и электромагнитного типа, что объясняется простотой их конструкции и сравнительно невысокой стоимостью.

Цифровое реле задержки отключения нагрузки

По виду механизма, обеспечивающего задержку во времени, эти устройства делятся на следующие классы:

  • с электромагнитным замедлением;
  • пневматические (компрессорные);
  • с часовым (анкерным) замедляющим механизмом;
  • моторные системы;
  • электронно-механические аналоговые устройства.

Каждый из перечисленных образцов отличается от аналогов своими характеристиками и применяется в конкретных условиях на усмотрение пользователя. Устанавливаемые на дин рейку модульные конструкции могут использоваться в качестве временного реле 220 Вольт для освещения внутридомовых пространств.

Недельный цифровой таймер

Цифровой недельный таймер или электронное реле времени – это гибкое в управлении программируемое устройство, рассчитанное на срабатывание в течение семи календарных дней. С его помощью удается задавать точные даты необходимых коммутаций (подключений или отключений конкретных нагрузок) в общественных заведениях типа школы, офиса и подобных им мест коллективного пользования.

В «продвинутых» образцах суточных реле времени предусматривается возможность сохранения копий нескольких программ с возможностью считывания. В качестве носителей информации используются различные типы накопителей, позволяющие снимать ее с применением электронного ключа D KEY (в версии систем PLUS и SYNCHRO).

Настройка электронно-механических аналоговых реле

Промышленные системы АСУ и некоторые бытовые устройства нередко оснащаются приборами электромеханического типа, для нормального функционирования которых требуется специальная настройка. На их передней панели располагается ручка потенциометра «под шлиц», вращающаяся с помощью отвертки с тонким жалом. По всей окружности рядом с ней имеется размеченная шкала градаций установки времени.

На некоторых моделях на лицевой панели предусмотрена светодиодная индикация состояния. Для выставления нужного интервала достаточно повернуть отверткой шток потенциометра до соответствующей отметки с нанесенным рядом значением в минутах или часах. Приборы этого класса (типа NTE8, в частности) широко применяются в схемах управления вентиляцией в доме, отопительными модулями, а также в системах искусственного освещения.

Регулировка приборов с цифровой шкалой

Настройка приборов этого типа иллюстрируется на примере таймера с цифровой шкалой марки «REV Ritter», включаемого в обычную сетевую розетку. Период действия его временной задержки, как правило, ограничивается одними сутками, что вполне хватает для бытовых условий. Инструкция по настройке такого реле включает следующие пункты:

  1. Воткнуть устройство в сетевую розетку.
  2. Передвинуть вверх все регулировочные элементы (сегменты), выставленные по окружности настроечного диска.
  3. Сдвинуть вниз только те из них, что соответствуют выставляемому времени.
  4. Указатель центрального диска устанавливается на текущее время.

Если вниз смещены сегменты, расположенные между цифрами 18 и 20, нужная нагрузка включится по истечении 18 часового интервала и отключится через два часа. В конструкции такого полуавтомата предусмотрена возможность организации до 48 рабочих циклов (включений и выключений) в течение двух календарных суток.

Подключение в схему управления

Используется классическая схема, позволяющая коммутировать многопозиционную нагрузку по временному признаку (в данной ситуации число состояний равно 2-м). К приборам этого класса обязательно прикладывается технический паспорт, где описывается не только их конструкция, но и порядок подключений.

На некоторых моделях электронно-механических и цифровых таймеров схема нанесена непосредственно на корпусе прибора.

Классический вариант коммутаций представлен в виде следующей последовательности операций:

  1. При подключении к сети питание подается непосредственно на клеммы прибора.
  2. Через встроенный автомат фазное напряжение поступает на обмотку исполнительного реле.
  3. Его контакторы подключают схему непосредственно к линии электропитания.

Принцип подключения большинства релейных приборов по своей сути одинаков. При подаче питания на него срабатывает внутренняя схема, благодаря которой напряжение поступает к нагрузке через группу коммутируемых контактов.

Алексей Бартош/ автор статьи
Понравилась статья? Поделиться с друзьями:
Gk-Rosenergo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: