Типовые схемы и способы пуска синхронных двигателей

Синхронныедвигатели получили широкое распространение в промышленности дляэлектроприводов, работающих с постоянной скоростью (компрессоров,насосов и т.д.). В последнее время, вследствие появл

Типовые схемы и способы пуска синхронных двигателей

Типовые схемы пуска синхронных электродвигателей

Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Достоинства синхронных электродвигателей

Синхронный двигатель несколько сложнее, чем асинхронный, но обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии , который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности ( cos фи) равным единице.Если для предприятия необходима выработка реактивной энергии, то с и нхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Способы пуска синхронного электродвигателя

Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через реактор или автотрансформатор.

Пуск синхронного двигателя осуществляется как пуск асинхронного. Собственный пусковой момент синхронной машины мал, а у неявнополюсной равен нулю. Для создания асинхронного момента ротор снабжается пусковой беличьей клеткой, стержни которой закладываются в пазы полюсной системы. (В явнополюсном двигателе стержни между полюсами, естественно, отсутствуют.) Эта же клетка способствует повышению динамической устойчивости двигателя при набросах нагрузки.

За счет асинхронного момента двигатель трогается и разгоняется. Ток возбуждения в обмотке ротора при разгоне отсутствует. Машина пускается невозбужденной, так как наличие возбужденных полюсов осложнило бы процесс разгона, создавая тормозной момент, аналогичный моменту асинхронного двигателя при динамическом торможении.

При достижении так называемой подсинхронной скорости, отличающейся от синхронной на 3 — 5%, подается ток в обмотку возбуждения и двигатель после нескольких колебаний около положения равновесия втягивается в синхронизм. Явнополюсные двигатели за счет реактивного момента при малых моментах на валу иногда втягиваются в синхронизм без подачи тока в обмотку возбуждения.

В синхронных двигателях трудно одновременно обеспечить необходимые значения пускового момента и входного момента под которым понимают асинхронный момент, развиваемый при достижении скоростью 95% синхронной. В соответствии с характером зависимости статического момента от скорости, т.е. в соответствии с типом механизма, для которого предназначен двигатель, на электромашиностроительных заводах приходится варьировать параметры пусковой клетки.

Иногда для ограничения токов при пуске мощных двигателей уменьшают напряжение на зажимах статора, включая последовательно обмотки автотрансформатора или резисторы. Следует иметь в виду, что при пуске синхронного двигателя цепь обмотки возбуждения замыкается на большое сопротивление, превышающее сопротивление самой обмотки в 5 — 10 раз.

В противном случае под действием токов, наводимых в обмотке при пуске, возникает пульсирующий магнитный поток, обратная составляющая которого, взаимодействуя с токами статора, создает тормозной момент. Этот момент достигает максимального значения при скорости, несколько превышающей половину номинальной, и под его влиянием двигатель может приостановить разгон на этой скорости. Оставлять на время пуска цепь возбуждения разорванной опасно, так как возможно повреждение изоляции обмотки индуцируемыми в ней ЭДС.

Асинхронный пуск синхронного электродвигателя

Схема возбуждения синхронного двигателя с глухоподключенным возбудителем довольно проста и может применяться в том случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс

Асинхронный пуск синхронного двигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной.

В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление, чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.

Слабым местом большинства электроприводов с синхронными двигателям, значительно усложняющим эксплуатацию и повышающим затраты, многие годы являлся электромашинный возбудитель. В настоящее время широкое распространение для возбуждения синхронных двигателей находят тиристорные возбудители . Они поставляются в комплектном виде.

Тиристорные возбудители синхронных электродвигателей более надежны и имеют более высокий к.п.д. по сравнению с электромашинными возбудителями. С их помощью легко решаются вопросы оптимального регулирования тока возбуждения для поддержания постоянства cos фи, напряжения на шинах, от которых питается синхронный двигатель, а также ограничение токов ротора и статора синхронного двигателя в аварийных режимах.

Тиристорными возбудителями комплектуется большинство выпускаемых крупных синхронных электродвигателей. Они выполняют обычно следующие функции:

  • пуск синхронного двигателя с включенным в цепь обмотки возбуждения пусковым резистором,
  • бесконтакное отключение пускового резистора после окончания пуска синхронного двигателя и защиту его от перегрева,
  • автоматическую подачу возбуждения в нужный момент пуска синхронного электродвигателя,
  • автоматическое и ручное регулирование тока возбуждения
  • необходимую форсировку возбуждения при глубоких посадках напряжения на статоре и резких набросах нагрузки на валу синхронного двигателя,
  • быстрое гашение поля синхронного двигателя при необходимости снижения тока возбуждения и отключениях электродвигателя,
  • защиту ротора синхронного двигателя от длительной перегрузки по току и коротких замыканий.

Если пуск синхронного электродвигателя производится на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора. Возможно подключение обмотки возбуждения двигателя к якорю возбудителя последовательно с разрядным сопротивлением.

Процесс подачи возбуждения синхронному двигателю автоматизируется двумя способами: в функции скорости и в функции тока.

Система возбуждения и устройство управления синхронных двигателей должны обеспечивать:

  • пуск, синхронизацию и остановку двигателя (с автоматической подачей возбуждения в конце пуска);
  • форсировку возбуждения кратностью не менее 1,4 при снижении напряжения сети до 0,8U н ;
  • возможность компенсации двигателем реактивной мощности, потребляемой (отдаваемой) смежными электроприемниками в пределах тепловых возможностей двигателя;
  • отключение двигателя при повреждениях в системе возбуждения;
  • стабилизацию тока возбуждения с точностью 5% установленного значения при изменении напряжения сети от 0,8 до 1,1;
  • регулирование возбуждения по отклонению напряжения статора с зоной нечувствительности 8%;
  • при изменении питающего напряжения статора синхронного двигателя от 8 до 20% ток изменяется от установленного значения до 1,4 I н , увеличение тока возбуждения для обеспечения максимальной перегружаемости двигателя.

На схеме, приведенной на рисунке, подача возбуждения синхронному двигателю осуществляется с помощью электромагнитного реле постоянного тока КТ (реле времени с гильзой). Катушка реле включается на разрядное сопротивление Rразр через диод VD. При подключении обмотки статора к сети в обмотке возбуждения двигателя наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.

При пуске скольжение S = 1. По мере разгона двигателя оно уменьшается и интервалы между выпрямленными полуволнами тока возрастают; магнитный поток постепенно снижается по кривой Ф(t).

При скорости, близкой к синхронной, магнитный поток реле успевает достигнуть значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом создает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).

Рассмотрим контроль подачи возбуждения в функции тока с помощью реле тока. При пусковом токе срабатывает реле тока КА и размыкает свой контакт в цепи контактора КМ2.

График изменения тока и магнитного потока в реле времени КТ

При скорости, близкой к синхронной, реле КА отпадает и замыкает свой контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает свой контакт в цепи возбуждения машины и шунтирует резистор Rразр.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Типовые схемы пуска синхронных электродвигателей

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

На сегодняшний день использование синхронных двигателей получило широкое распространение в сфере производства оборудования, работающего с постоянной скоростью, которое применяется в разных сферах человеческой деятельности. В связи с этим, существует несколько способов запуска синхронных электродвигателей, наиболее распространенные варианты которых будут представлены ниже.

Способы пуска синхронного электродвигателя

Способы пуска синхронного электродвигателя достаточно сложны, в этом заключается один из основных недостатков электродвигателей данного типа. Запуск синхронных электродвигателей осуществляется либо посредством воздействия вспомогательного пускового двигателя, либо с помощью асинхронного пуска. Рассмотрим каждый из способов в отдельности.

Асинхронный пуск синхронного электродвигателя

Асинхронный пуск синхронного электродвигателя предполагает расположение дополнительной короткозамкнутой обмотки в полюсных наконечниках полюсов ротора. Это необходимо, чтобы обеспечить во время пуска вывод чрезмерно большой Э.Д.С., образующейся в обмотке (1), что является возможным благодаря замыканию рубильника (2) на соединение (3). Благодаря тому, что магнитное поле, возникающее в результате включения напряжения трехфазной сети в обмотке статора (4), пересекает короткозамкнутую обмотку (пусковую обмотку), находящуюся в полюсных наконечниках ротора, индуктируются токи.

Действие этих токов в сочетании с вращающимся полем статора, запускают во вращение ротор, который постепенно набирает обороты. Достигнув 95-97% количества оборотов рубильник (2) ротора переходит в состояние, которое вынуждает обмотку ротора включить сеть постоянного напряжения.

Читайте также  Как перепрограммировать счетчик электроэнергии и сколько это стоит

Асинхронный пуск синхронного электродвигателя не лишен недостатков, точнее сказать, недостатка, которым является большой пусковой ток, который по значению может превышать в 7 раз рабочий ток. Столь высокое значение пускового тока является причиной падения напряжения в сети, что негативно сказывается на функционировании других потребителей энергии. Одним из наиболее распространенных вариантов решения упомянутого недостатка является использование автотрансформатора для понижения напряжения, а также использование тиристорных возбудителей для пуска синхронных электродвигателей, которые отличаются высоким К.П.Д. Именно высокое значение К.П.Д. во многом определило выбор тиристорных возбудителей в качестве комплектов большей части выпускаемых синхронных электродвигателей крупных размеров. К тому же, применение тиристорных возбудителей позволяет автоматизировать процесс подачи возбуждения синхронному двигателю. Автоматизация может быть реализована 2-мя способами: подача возбуждения синхронному двигателю в функции скорости и подача возбуждения синхронному двигателю в функции тока. При этом контроль подачи возбуждения синхронному двигателю в функции тока осуществляется с помощью реле тока.

На сегодняшний момент именно асинхронный пуск синхронных двигателей получил наибольшее распространение, так как его достаточно просто реализовать, а работает он крайне надежно.

Пуск синхронного двигателя при помощи вспомогательного двигателя

Пуск синхронного двигателя при помощи вспомогательного двигателя предполагает запуск синхронного электродвигателя благодаря работе другого двигателя, работа которого позволяет ротору синхронного двигателя развернуть полюса, осуществляя дальнейшее вращение совершенно самостоятельно. Чтобы запуск произошел, нужно создать условия, при которых количество пар полюсов асинхронного двигателя было бы меньше количества пар полюсов синхронного двигателя. Порядок запуска синхронного двигателя предполагает включение рубильника (3), пуск вспомогательного асинхронного двигателя (2), осуществляющего разворот ротора синхронного двигателя (1) до скорости, которая соответствует скорости поля статора. Далее включаются полюсы ротора после включения рубильника (4). При включении синхронного двигателя в сеть трехфазного тока, требуется синхронизация, осуществляемая реостатом (5). Реостат организует возбуждение, позволяющее установить напряжение обмотки статора, определяемое вольтметром V, равное напряжению в сети, которое указывает вольтметр V1.

При разомкнутом рубильнике лампы (6), расположенные параллельно ножам рубильника (7), буду мигать. По мере того, как будет меняться скорость ращения вспомогательного асинхронного двигателя, лампы будут постепенно начинать мигать все реже, пока все они не погаснут в раз. Это сигнал того, что синхронный двигатель пора включать в сеть трехфазного тока рубильником (7). Так как ротор двигателя далее может вращаться без помощи, то вспомогательный двигатель (2) пора отключать от сети посредством рубильника (3).

Это сложная процедура, являющаяся самым главным недостатком такого варианта асинхронного электродвигателя, что определяет крайне редкие случаи ее практической реализации.

Типовые схемы и способы пуска синхронных двигателей

Для обеспечения работы мощных электроприводов применяются синхронные электродвигатели. Они нашли применение в компрессорных установках, насосах, в системах, прокатных станах, вентиляторах. Применяются в металлургической, цементной, нефтегазовой и других отраслях промышленности, где необходимо использовать оборудование большой мощности. В этой статье мы решили рассказать читателям сайта Сам Электрик, как может выполняться пуск синхронных двигателей.

  • Преимущества и недостатки
  • Способы пуска
  • Запуск с помощью разгонного двигателя
  • Асинхронный запуск
  • Частотный пуск
  • Системы возбуждения

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Способы пуска

Пуск синхронных электродвигателей можно осуществить тремя способами – с помощью дополнительного двигателя, асинхронный и частотный запуск. При выборе способа учитывается конструкция ротора.

Он выполняется с постоянными магнитами, с электромагнитным возбуждением или комбинированным. Наряду с обмоткой возбуждения на роторе смонтирована короткозамкнутая обмотка – беличья клетка. Её также называют демпфирующей обмоткой.

Запуск с помощью разгонного двигателя

Этот метод пуска редко применяется на практике, потому что его сложно реализовать технически. Требуется дополнительный электродвигатель, который механически соединен с ротором синхронного двигателя.

С помощью разгонного двигателя раскручивается ротор до значений близких к скорости вращения поля статора (к синхронной скорости). После чего на обмотку возбуждения ротора подают постоянное напряжение.

Контроль осуществляется по лампочкам, которые включены параллельно рубильнику, подающему напряжение на обмотки статора. Рубильник должен быть отключен.

В первоначальный момент лампы мигают, но при достижении номинальных оборотов они перестают гореть. В этот момент подают напряжение на обмотки статора. После чего синхронный электродвигатель может работать самостоятельно.

Затем дополнительный мотор отключается от сети, а в некоторых случаях его отсоединяют механически. В этом состоят особенности пуска с разгонным электродвигателем.

Асинхронный запуск

Метод асинхронного пуска на сегодня самый распространенный. Такой запуск стал возможен после изменения конструкции ротора. Его преимущество в том, что не нужен дополнительный разгонный двигатель, так как дополнительно к обмотке возбуждения в ротор вмонтировали короткозамкнутые стержни беличьей клетки, что дало возможность запускать его в асинхронном режиме. При таком условии этот способ пуска и получили широкое распространение.

Сразу же рекомендуем просмотреть видео по теме:

При подаче напряжения на обмотку статора происходит разгон двигателя в асинхронном режиме. После достижения оборотов близких к номинальным, включается обмотка возбуждения.

Электрическая машина входит в режим синхронизма. Но не все так просто. Во время пуска в обмотке возбуждения возникает напряжение, которое возрастает с ростом оборотов. Оно создает магнитный поток, который воздействует на токи статора.

При этом возникает тормозящий момент, который может приостановить разгон ротора. Для уменьшения вредного воздействия обмотки возбуждения подключают к разрядному или компенсационному резистору. На практике эти резисторы представляют собой большие тяжелые ящики, где в качестве резистивного элемента используются стальные спирали. Если этого не сделать, то из-за возрастающего напряжения может произойти пробой изоляции. Что повлечет выход оборудования из строя.

После достижения подсинхронной частоты вращения, от обмотки возбуждения отключаются резисторы, и на нее подается постоянное напряжение от генератора (в системе генератор-двигатель) или от тиристорного возбудителя (такие устройства называются ВТЕ, ТВУ и так далее, в зависимости от серии). В результате чего двигатель переходит в синхронный режим.

Недостатками этого метода являются большие пусковые токи, что вызывает значительную просадку напряжения питающей сети. Это может повлечь за собой остановку других синхронных машин, работающих на этой линии, в результате срабатывания защит по низкому напряжению. Для уменьшения этого воздействия цепи обмоток статора подключают к компенсационным устройствам, которые ограничивают пусковые токи.

  1. Добавочные резисторы или реакторы, которые ограничивают пусковые токи. После разгона они шунтируются, и на обмотки статора подается сетевое напряжение.
  2. Применение автотрансформаторов. С их помощью происходит понижение входного напряжения. При достижении скорости вращения 95-97% от рабочей, происходит переключение. Автотрансформаторы отключаются, а на обмотки подается напряжение сети переменного тока. В результате электродвигатель входит в режим синхронизации. Этот метод технически более сложный и дорогостоящий. А автотрансформаторы часто выходят из строя. Поэтому на практике этот метод редко применяют.

Частотный пуск

Частотный пуск синхронных двигателей применяется для запуска устройств большой мощности (от 1 до 10 МВт) с рабочим напряжением 6, 10 Кв, как в режиме легкого запуска (с вентиляторным характером нагрузки), так и с тяжелым пуском (приводов шаровых мельниц). Для этих целей выпускаются устройства мягкого частотного пуска.

Принцип работы аналогичен высоковольтным и низковольтным устройствам, работающим по схеме преобразователя частоты. Они обеспечивают пусковой момент до 100% от номинала, а также обеспечивают запуск нескольких двигателей от одного устройства. Пример схемы с устройством плавного пуска вы видите ниже, оно включается на время запуска двигателя, а затем выводится из схемы, после чего двигатель включается в сеть напрямую.

Системы возбуждения

До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.

  • оптимальный режим пуска синхронного двигателя;
  • поддержание заданного тока возбуждения в заданных пределах;
  • автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
  • ограничение максимального и минимального тока возбуждения;
  • мгновенное увеличение тока возбуждения при понижении питающего напряжения;
  • гашение поля ротора при отключении от питающей сети;
  • контроль состояния изоляции, с оповещением о неисправности;
  • обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
  • работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.

Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.

В заключение отметим, что самый распространенный способ пуска синхронных двигателей — это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.

Способы запуска синхронных двигателей и типовые схемы: преимущества и недостатки

Синхронные двигатели, как правило, используются для того, чтобы максимально эффективно обеспечить работу крупных электрических приводов.

Оборудование с большой мощностью используют во многих промышленных сферах, его могут применять, например, металлургические или нефтегазовые компании.

Читайте также  Что делать, если сломался счетчик электроэнергии

Такие предприятия используют агрегаты для вентиляции, компрессоры, электронасосы, системы машин для обработки давлением металлов между вращающимися валками. Сегодня мы представим Вам обзор, как работают синхронные двигатели.

Преимущества и недостатки

Если сравнивать синхронные электродвигатели с асинхронными двигателями, однозначно у первых более сложный механизм, но также нужно выделить их существенные преимущества:

  • Работа синхронных двигателей не особо зависит от интенсивности напряжения.
  • Важным плюсом синхронных двигателей являются их сравнительно небольшие габариты, при этом их эффективность и механические функции намного лучше.
  • Независимо от того, какие будут колебания нагрузки, это никак не повлияет на обороты и скорость вращения.
  • Даже в случае значительных перегрузок на валу, синхронный двигатель будет работать без проблем, компенсируя такие пиковые скачки тем, что будет повышен ток в обмотке возбуждения.
  • Синхронные двигатели могут работать так же как компенсаторы, благодаря тому, что они могут производить реактивную энергию. Для этого нужно подать повышенное напряжение на обмотку возбуждения. Если же выставить ток возбуждения в оптимальном режиме, не будет потребляться реактивная энергия, так же она не будет уходить на сеть.

При всех вышеперечисленных преимуществах использования синхронных электродвигателей, мы должны так же отметить один основной недостаток – отсутствие пускового момента. То есть, для запуска двигателя, необходимо использовать отдельное оборудование.

Это как раз и есть основная причина, почему синхронные двигатели долгое время были ограничены в использовании.

Способы запуска

Существует 3 способа запуска синхронного двигателя:

  • использование дополнительного двигателя,
  • асинхронный запуск,
  • частотный запуск.

Для того, чтобы понять какой способ запуска применять, нужно разобраться с роторной конструкцией.

Он может быть выполнен с электромагнитным возбуждением, может состоять из постоянных магнитов, и может иметь комбинированную конструкцию. Кроме этого на роторе есть так называемая демпфирующая обмотка, помимо обмотки возбуждения. Такую короткозамкнутую обмотку называют еще «беличьей клеткой».

Использование дополнительного двигателя

Не самый популярный способ запуска, кроме того, не самый простой в плане технической реализации. Для того чтобы использовать такой способ, нужен еще один двигатель, его нужно присоединить к ротору электродвигателя.

Еще один двигатель нужен для того, чтобы скорость ротора соответствовала полю статора, то есть добиться синхронной скорости. Следующим этапом на обмотку возбуждения ротора будет подаваться постоянное напряжение.

Подача напряжения на обмотку статора выполняется при помощи рубильника, и контролировать процесс мы будем благодаря лампочкам, которые включаются одновременно с рубильником. Рубильник нужно выключить.

Сначала лампочки начнут мигать, но как только номинальные обороты будут достигнуты, лампочки перестанут гореть. Дальше подается напряжение на обмотки статора, а наш синхронный двигатель продолжит работу самостоятельно.

Второй дополнительный разгонный двигатель нужно отключить от сети, иногда необходимо механическое отсоединение.

Асинхронный запуск

Этот метод используется чаще всего, возможность использовать такой способ появилась после того, как была изменена конструкция ротора.

Основное преимущество такого метода, это то, что нам не понадобится дополнительно оборудование, так как конструкция ротора содержит в себе короткозамкнутые стержни демпфирующей обмотки, и это позволит нам осуществить асинхронный режим для запуска.

Разгон электродвигателя будет асинхронным, запускаться он будет тогда, когда на статор будет подано напряжение. Как только будет достигнута необходимая скорость, включится обмотка возбуждения.

Чем больше будет расти скорость оборотов, во время пуска в обмотке возбуждения, тем больше будет расти напряжение.

При этом возникнет магнитный поток, он будет влиять на электроток статора, а также возникнет подавляющий момент, который может спровоцировать остановку ротора.

Чтобы уменьшить нежелательное влияние, нам понадобится резистор (либо разрядный, либо компенсационный), мы соединим его с обмоткой возбуждения.

Такие резисторы имеют форму громоздких боксов, в которых спирали из стали выполняют функцию резистивных элементов.

Это нужно делать обязательно, так, как существует риск поломки благодаря растущему напряжению.

После того, как будет достигнута под синхронная частота вращения, резистор будет отключен от обмотки возбуждения.

Дальше при помощи генератора, либо тиристорного возбудителя (ВТЕ, либо ТВУ и тд., зависит от серии), на обмотку пойдет постоянное напряжение. После этого двигатель перейдет в синхронный режим.

Помимо тех плюсов, которые мы описали выше, так же нужно понимать и недостатки такого запуска.

Главное – это значительные пусковые токи, которые могут стать причиной просадки напряжения питающей сети. Если такое случится, остальные синхронные машины, которые задействованы на той же линии, могут остановиться.

В такой ситуации сработают защитные функции из-за низкого напряжения. Чтобы избежать такой ситуации, понадобятся компенсационные устройства, которые мы подключим к цепи обмоток статора, таким образом мы ограничим пусковые токи.

  1. Дополнительные реакторы либо резисторы для ограничения пусковых токов. Когда произойдет разгон, они шунтируются, и сетевое напряжение пойдет на обмотки статора.
  2. Автотрансформаторы. Их можно применять, чтобы понизить напряжение на входе.

Как только будет достигнута скорость оборотов, не менее 95-97 процентов, будет выполнено переключение. Автотрансформаторы будут отключены, при этом на обмотки будет подано напряжение сети переменного тока. После этого двигатель начнет работать синхронно.

Данный метод используют не часто, он достаточно дорогой, и емкий по техническим параметрам. Кроме того, трансформаторы очень часто могут ломаться.

Частотный запуск

Если необходимо запустить мощные агрегаты от 1 до 10 МВт, используется еще один метод запуска для синхронных двигателей — это так называемый частотный запуск. Устройства для частотного запуска, как правило, имеют стандартное напряжение от 6 до 10 Кв.

Применяется такой запуск и в легком режиме (используя вентиляторную нагрузку), и в режиме тяжелого пуска (задействуется привод шаровых мельниц). В таких случаях используется специальное устройство.

На схеме показан наглядный образец приспособления с очень плавным запуском: когда двигатель будет запущен, устройство включится, дальше будет выведено из схемы, и в результате двигатель будет напрямую подключен к сети.

Это точно такая же система, как у низковольтных и высоковольтных устройств, которые работают по схеме частотного преобразования.

При таком принципе можно запустить несколько двигателей благодаря одному устройству, а пусковой момент будет при этом доходить до 100%.

Системы возбуждения

Современные приспособления, предназначенные для контроля уровня возбуждения – это тиристорные возбудители ВТЕ.

Несмотря на то, что еще совсем недавно для этого использовали генератор независимого возбуждения, сегодня они перестали быть актуальными. Давайте рассмотрим функции тиристорных возбудителей ВТЕ:

  • создают необходимый режим для пуска синхронного двигателя;
  • поддерживают параметры тока возбуждения;
  • ограничивают крайние уровни тока, автоматом регулируют напряжение возбуждения, если возникает нагрузка;
  • в случае, если питающий ток будет понижен, они моментально увеличивают ток возбуждения;
  • если отключится питающая сеть, они мгновенно гасят поле ротора;
  • в случае проблем с изоляцией, оповещают о проблеме;
  • проверяют состояние обмотки возбуждения, если двигатель не работает;
  • осуществляют асинхронный и синхронный запуск, при работе высоковольтным частотным преобразованием.

Все эти функции говорят о надежности подобных систем возбуждения. Ну а главный их минус – это дорогостоящее оборудование.

Подводя итоги нашего обзора отметим, что асинхронный способ запуска на сегодня самый популярный, запуск с дополнительным электродвигателем практически никем не используется, частотный запуск эффективный, но имеет очень высокую цену.

Типовые схемы и способы пуска синхронных двигателей

Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.

Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.

Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.

Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).

Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:

f – частота тока в обмотке, Гц, p – количество пар полюсов.

Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.

Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.

Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.

Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.

Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.

Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).

Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).

Ниже вы видите условное обозначение на схеме синхронной машины.

ПРЯМОЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Как уже было сказано выше, прямое включение обмотки асинхронного двигателя может применяться только при низкой мощности. В этом случае пусковой ток превышает номинальный в 5-7 раз, что не является проблемой для коммутационного оборудования и электропроводки.

Основной проблемой прямого пуска становится подключение нескольких электродвигателей к маломощной подстанции или генератору.

Включение в сеть нового электродвигателя может вызвать настолько сильную просадку напряжения, что уже работающие двигатели остановятся, а новому мотору не хватит пускового момента, чтобы стронуться с места.

Пусковой ток асинхронного двигателя достигает максимального значения в момент включения и плавно снижается до номинального по мере раскрутки ротора.

Следовательно, для уменьшения времени перегрузки сети асинхронный двигатель должен включаться с минимальной нагрузкой, если это возможно.

Мощные токарные станки, гильотины для рубки металла не имеют фрикционных муфт, и все их вращающиеся механизмы раскручиваются в момент включения электродвигателя.

В этом случае длительные просадки напряжения приходится прямо закладывать в проектируемое для них электроснабжение.

Применение сопротивления при пуске

Метод применим для асинхронных двигателей, подключаемых к однофазной сети, и имеющих первичную дополнительную обмотку с короткозамкнутым ротором. Так называют мотор с расщепленной фазой, электроцепь которого имеет высокое активное сопротивление.

Чтобы пустить в ход двигатель, питаемый от однофазной сети, необходим пусковой резистор, соединяемый последовательно с дополнительной намоткой. Тогда сдвиг фаз составляет 30 градусов. Этого хватает для разгона. Ниже представлена схема, согласно которой достигается омический сдвиг фаз.

Вместо резистора можно применить дополнительную обмотку высокого сопротивления, но низкой индуктивности. В этом случае намотка имеет мало витков, которые выполняются из провода меньшего сечения в отличие от того, что используется для рабочей намотки.

В России с конвейера выходят моторы, подключаемые к однофазной сети, оснащенные резистором для сдвига фаз. Их мощность варьируется в диапазоне 18-600 Вт. Двигатели рассчитаны для сетей с напряжением 127, 220 или 380 Вольт и переменным током с частотой 50 Гц.

Сфера применения

Синхронные двигатели стоят дороже чем асинхронные, к тому же требуют дополнительного источника постоянного тока возбуждения – это отчасти снижает ширину области применения этого вида электрических машин. Однако, синхронные электродвигатели используют для привода механизмов, где возможны перегрузки и требуется точное поддерживание стабильных оборотов.

При этом чаще всего используются в области больших мощностей — сотен киловатт и единиц мегаватт, и, при этом, пуск и остановка происходят достаточно редко, то есть машины работают круглосуточно долгое время

Такое применение обусловлено тем, что синхронные машины работают с cosФи приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий

Реакторный пуск

В этом случае двигатель пускается при пониженном напряжении сети с помощью реактора или трансформатора. Реакторный пуск рекомендуется в первую очередь и только при невозможности его использования допу-скается автотрансформаторный пуск.

Реакторный пуск синхронных компенсаторов ( рис. 5 — 1 ж), принятый сейчас как основной, применен для мощных машин.

Реакторный, или автотрансформаторный, пуск осуществляется подачей на обмотки электродвигателей напряжения, сниженного с помощью автотрансформатора или чаще всего реактора, которые отключаются при разгоне агрегата до подсин-хронной частоты вращения. При реакторных пусках снижаются момент, развиваемый двигателем при пуске, толчки и вибрации машины, потребляемая мощность, нагрев обмоток и падение напряжения и увеличивается время пуска.

Конденсаторный или реакторный пуск .

Пуск электродвигателей серии ВДС 325 — прямой асинхронный от сети, имеющей полное напряжение. Электродвигатели ВДС 325 имеют реакторный пуск от сети с пониженным напряжением.

Трехфазный асинхронный двигатель с кратностью начального пускового тока kj 5 6 и кратностью начального пускового момента kn — 1 3 пускается в ход при нагрузке Мв 0 5 Мн. Применим ли в этом случае реакторный пуск .

Дают возможность регулировании напряжения. При до-статичнои мощности подстанции возможен реакторный пуск или непосредственный пуск от шип.

Схема электрических соединений насосной станции должна обеспечивать прямой пуск асинхронных и синхронных электродвигателей от полного напряжения сети. Для мощных электродвигателей в соответствии с указаниями заводов-изготовителей может применяться реакторный пуск . Использование крупных синхронных электродвигателей для работы в компенсаторном режиме в перерывах водоподачи должно быть обосновано технико-экономическими расчетами.

Вспомогательная схема токовых цепей защит электродвигателей с реакторным пуском от многофазных КЗ. а — при применении токовой отсечки. б — при применении дифференциальной защиты. М — электродвигатель. L — пусковой реактор. Ql, Q2 — выключатели. ТА1 — ТАЗ — трансформаторы тока. АК1, АК2 — комплекты токовых отсечек. АК — комплект дифференциальной защиты.| Принципиальная схема дифференциальной защиты электродвигателя М с реле.

Если применена дифференциальная защита, то в плече защиты со стороны питания с той же целью устанавливается двухфазная двухрелейная отсечка без выдержки времени, которая для повышения чувствительности выводится из действия на время пуска электродвигателя. На рис. 2.192 показаны блок-схемы токовых цепей защит электродвигателей с реакторным пуском .

Пуск синхронных компенсаторов осуществляется различными способами: асинхронный — непосредственно от сети, от разгонного двигателя, через автотрансформатор и через реактор; асинхронный пуск применяется только при малых мощностях компенсаторов. Наиболее простым способом пуска, чаще всего применяемым на практике, является реакторный пуск компенсатора . Синхронные компенсаторы типа КС до 30 000 ква включительно имеют воздушное охлаждение, а компенсатор типа КСВ-37500 ква — водородное охлаждение.

Прямая ( а и обратная ( б схемы включения пусковых автотрансформаторов.

Однако это преимущество автотрансформаторного пуска достигается ценой значительного усложнения и удорожания пусковой аппаратуры. Поэтому автотрансформаторный пуск применяется реже реакторного, при более тяжелых условиях, когда реакторный пуск не обеспечивает необходимого пускового момента.

Схема пуска синхронного двигателя с реактором.

Все аппараты управления синхронным двигателем размещаются на станциях управления. На рис. 39 показан общий вид фасада станции управления ПН7028 для синхронных двигателей с реакторным пуском . Кроме аппаратов, перечисленных при описании схемы пуска синхронного двигателя СТМ-4000-2, на станции управления показаны приборы и аппараты, применяемые в управлении двигателей.

200. Способы пуска синхронных двигателей

Одним из главных недостатков синхронных двигателей является сложность их пуска в ход. Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного пускового двигателя или путем асинхронного пуска.

Пуск синхронного двигателя при помощи вспомогательного двигателя. Если ротор синхронного двигателя с возбужденными полюсами развернуть другим, вспомогательным двигателем до скорости вращения поля статора, то магнитные полюсы статора, взаимодействуя с полюсами ротора, заставят ротор вращаться далее самостоятельно без посторонней помощи, в такт с полем статора, т. е. синхронно (откуда эти двигатели и получили свое название).

На фиг. 405 показана схема пуска оинхрониого двигателя 1 с помощью вспомогательного асинхронного двигателя 2.

Для осуществления пуска необходимо, чтобы число пар полюсов асинхронного двигателя было меньше числа пар полюсов синхронного двигателя, ибо при этих условиях вспомогательный асинхронный двигатель может развернуть ротор синхронного двигателя до синхронной скорости.

Порядок пуска синхронного двигателя следующий. Включая рубильник 3, пускают вспомогательный асинхронный двигатель 2, который разворачивает ротор синхронного двигателя 1 до скорости, соответствующей скорости поля статора. Скорость вращения вспомогательного двигателя определяется по тахометру 1 . Затем, включая рубильник 4 постоянного тока, возбуждают полюсы ротора. Чтобы включить синхронный двигатель в сеть трехфазного тока, его нужно синхронизировать так же, как и при включении синхронного генератора на параллельную работу. Для этого реостатом 5 устанавливают такое возбуждение, чтобы напряжение обмотки статора по вольтметру V было равно напряжению сети, указываемому вольтметром V1.

Электролампы 6, включенные параллельно ножам рубильника 7 трех-фазной сети, при разомкнутом рубильнике будут мигать. Сначала мигание будет частым, но если изменять скорость вращения вспомогательного асинхронного двигателя, то лампы будут мигать . все реже и реже. Синхронный двигатель можно включить в сеть трехфазного тока рубильником 7 тогда, когда все три лампы одновременно погаснут. Ротор двигателя при этом входит в синхронизм и может далее вращаться самостоятельно. Теперь

вспомогательный двигатель 2 рубильником 3 можно отключить от сети.

Сложность пуска и необходимость вспомогательного двигателя являются существенными недостатками этого способа пуска синхронных двигателей. Поэтому в настоящее время он применяется редко.

Асинхронный пуск синхронного двигателя. Для осуществления этого способа пуска в полюсных наконечниках полюсов ротора укладывается дополнительная короткозамкнутая обмотка. Так как во время пуска в обмотке возбуждения 1 двигателя наводится большая э. д. с, то по соображениям безопасности она замыкается рубильником 2 на сопротивление 3 (фиг. 406).

При включении напряжения трехфазной сети в обмотку статора 4 синхронного двигателя возникает вращающееся магнитное поле, которое, пересекая короткозамкнутую (пусковую) обмотку, заложенную в полюсных наконечниках ротора, индуктирует в ней токи.

Эти токи, взаимодействуя с вращающимся полем статора, приведут ротор во вращение. При достижении ротором наибольшего числа оборотов (95—97% синхронной скорости) рубильник 2 переключают так, чтобы обмотку ротора включить в сеть постоянного напряжения.

Недостатком асинхронного пуска является большой пусковой ток (в 5—7 раз больший рабочего тока). Пусковой ток вызывает падение напряжения в сети, а это отражается на работе других потребителей. Для уменьшения пускового тока применяют пуск при пониженном напряжении с помощью реактора 2 или автотрансформатора.

В настоящее время применяют почти исключительно асинхронный пуск синхронных двигателей ввиду его простоты и надежности. Существуют также схемы автоматического асинхронного пуска синхронных двигателей.

1 Тахометр — прибор, измеряющий скорость вращения машины.

2 Реактор — индуктивное сопротивление, выполненное в виде катушки без стального сердечника.

Алексей Бартош/ автор статьи
Понравилась статья? Поделиться с друзьями:
Gk-Rosenergo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: