Управление контактором с помощью твердотельного реле

Привет, Geektimes! Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino,...

Управление контактором с помощью твердотельного реле

Щелкаем реле правильно: коммутация мощных нагрузок

Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь — чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью — при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле — второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус — они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала — чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки — пылесос мощностью 650 Вт.

Классическая схема — подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос — а лучше оба — должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль — задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего — ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер — RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле — ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent — Application Note 1399, «Maximizing the Life Span of Your Relays». При работе реле на худший тип нагрузки — мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление — добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз.

А теперь сделаем ход конём — объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева — вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 — со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC

100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 — и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее — до самого выключения — он в работе участия не принимает. И не греется.

Выключение — в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей — NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов — то время, на которое симистор опережает реле в нашей схеме — ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

Трёхфазные твердотельные реле + основы применения приборов на практике

Главная страница » Трёхфазные твердотельные реле + основы применения приборов на практике

Твердотельные реле находят место в широком спектре применений для переключения электрических нагрузок, включая профессиональное оборудование, к примеру — системы отопления, вентиляции и кондиционирования воздуха. Однако для лучшего понимания относительно того, как применять трёхфазные твердотельные реле и управлять, требуются отдельные сведения. В частности, сведения о разделении нагрузок на две основные категории: нагрев и управление движением.

Трёхфазные твердотельные реле (ТТР) – основы применения

Очевидно, что обозначенные применения (резистивный элемент / электродвигатель) далеко не всеобъемлющая группа, поскольку существует ряд других применений, выходящих за рамки указанных двух категорий. Например — системы освещения и распределения электроэнергии.

Однако большинство инженеров-проектировщиков, использующих трёхфазные твердотельные реле, применяют устройства именно к одному из двух указанных общих типов трёхфазных систем. Основное внимание, как показывает картинка ниже, уделяется резистивным элементам и электродвигателям.

Блок-схема упрощённого вида управляемыми приборами ТТР: слева – термически-резистивная нагрузка (ТРН); справа – моторная нагрузка; ТТР – трёхфазное твердотельное реле; Тн – нагрузочный ток; Нн – нагрузочное напряжение; У – управляющий сигнал

Несмотря на то, что каждое применение индивидуально и требует особой проверки, сосредоточение внимания на этих двух основных категориях позволяет обобщить характеристики. Также обобщаются последующие требования, предъявляемые к трёхфазным твердотельным реле, используемым для выполнения функций переключения.

Более того, ограничение внимания мощными системами, использующими трёхфазные сети для питания систем, охватывает некоторые из наиболее требовательных коммерческих и промышленных условий, в которых сегодня используются трёхфазные твердотельные реле.

Трёхфазные твердотельные реле – определение и описание

Исполнение устройства под три фазы, по сути, представлено отдельными однофазными реле, заключёнными в одном корпусе с общим входом. Соответственно, все три отдельных устройства питаются током одновременно.

Инженеры-электрики, кстати заметить, нередко используют три отдельных однофазных устройства для переключения питания на трёхфазной системе.

Обычно это делается по желанию или когда по тем или иным причинам не представляется возможным применение именно трёхфазного твердотельного реле.

Однако более распространённым и упрощённым подходом следует рассматривать использование трехфазного твердотельного реле для обеспечения функции переключения.

Такой подход упрощает электромонтаж и обычно уменьшает общую потребность в пространстве внутри конструкционной панели.

Пример целой сборки на основе ТТР с коммутацией на три фазы – своего рода интеллектуальный регулятор напряжения, построенный из десятка приборов, работающих совместно

Основными характеристиками твердотельных реле — однофазных или трёхфазных, являются:

  • бесконтактное включение и выключение, что означает отсутствие дуги, дребезга контактов или акустического шума;
  • высокая скорость переключения;
  • долговечность работы;
  • низкие требования к входной мощности управления;
  • отключение при нулевом токе, что существенно минимизирует электрические переходные процессы, особенно при переключении индуктивных систем;
  • включение при нулевом напряжении, что минимизирует скачки тока в обмотках и связанные переходные процессы.

Трёхфазные твердотельные реле предназначены для управления трёхфазными нагрузками переменного тока, которые в противном случае могли бы переключаться при помощи других – электромеханических, ртутных или иных контакторов.

Способы коммутации на трёхфазные твердотельные приборы

Для трехфазного резистивного нагрева обычно используются трёхфазные твердотельные реле с переходом через нуль. Эти версии устройств переключают питание нагрузки в точке пересечения нулевого напряжения каждой фазы, минимизируют пусковые токи.

Приборы статичного включения рекомендуются для переключения индуктивных нагрузок — электродвигателей, компрессоров, трансформаторов, где желательно включать три фазы одним моментом. Все приборы переменного тока (за исключением специальных версий, построенных с полевыми транзисторами) отключают выход при нулевом токе.

Читайте также  Советы по выбору реле напряжения для бытовой сети

Отключение проходит независимо от того, управляются ли приборы нулевым напряжением или статичным включением. Таким образом, уменьшаются переходные процессы, вызванные открытием нагрузки посредством магнитного поля, которое сводится к нулю.

Пример радиаторной сборки под прибор ТТР на три фазы, предназначенной для рассеивания тепла, выделяемого схемой при максимальных токовых нагрузках

При включении твердотельного реле в трёхфазные схемы необходимо учитывать: рассеивание тепловой мощности прибора по причине потерь в выходных силовых полупроводниках. Этот момент нередко требует использования внешних радиаторов (теплоотводов) для поддержания допустимой рабочей температуры.

Электрические переходные процессы, передаваемые по линиям электропередач или создаваемые переключением реактивных нагрузок, могут потребовать дополнительной защиты от переходных процессов. Также приходится учитывать выбор включения нулевого или ненулевого напряжения в зависимости от типа нагрузки.

Стандарты безопасности для трёхфазных твердотельных реле

Наиболее распространённые номинальные категории относятся к применениям для резистивных нагрузок и электродвигателей. Основное различие между этими двумя номиналами заключается в токах.

Трёхфазные твердотельные реле для электродвигателей необходимо рассчитывать на работу, как с током заторможенного двигателя, так и с током полной нагрузки.

Таблица ниже показывает три наиболее распространённых стандарта под трёхфазные твердотельные реле для работы с электродвигателями.

Таблица стандартов ТТР под номинальные моторные нагрузки

Стандарты Классификация
UL508 Контроллер электродвигателя
IEC62314 Моторная нагрузка, LC B
IEC 60947-4-2 Контроллер электродвигателя, AC-53a

Стандарты, отмеченные таблицей, требуют, чтобы переключатели, предназначенные для управления нагрузкой электродвигателя, выдерживали токи полной нагрузки. В результате, конкретный прибор будет иметь разные номинальные значения тока для резистивных нагрузок или нагрузок двигателя.

По сути, номинальная резистивная нагрузка трёхфазного твердотельного реле снижается, когда имеет место применение к нагрузкам двигателя. Например, твердотельный прибор ТТР, способный выдерживать резистивный ток 50А, фактически рассчитывается как ТТР мощностью 17А, при использовании в системах управления электродвигателем.

Приборы ТТР для трехфазных асинхронных двигателей

Исторически наиболее распространенными устройствами, используемыми для переключения мощности на асинхронные двигатели, являются электромеханические реле и контакторы. Однако по мере роста спроса на улучшенные характеристики и надёжность работы, трёхфазные твердотельные реле находят всё большее применение.

Как и в случаях с резистивной нагрузкой, управление электродвигателем может быть выполнено при помощи:

  1. Трёх отдельных ТТР,
  2. Одного трёхфазного прибора.
  3. Двух (или одного сдвоенного) ТТР, если это позволяет спецификация.

Явными преимуществами твердотельных реле для управления трёхфазным асинхронным двигателем отмечаются:

  • исключение механической усталости конструкции;
  • работа без контакта, без шума, без дуги;
  • высокоскоростное переключение;
  • низкая входная мощность управления;
  • отсутствие катушек индуктивности;
  • отключение нагрузки при нулевом токе;
  • долгий срок службы в отличие от механических реле и контакторов;
  • изоляция входа / выход до 4000В переменного тока;
  • полное соответствие директиве по ограничению вредных веществ.

Пуск и остановка мотора твердотельным прибором ТТР

Большинство применений трехфазных электродвигателей ограничиваются только функциями включения / выключения. Например, промышленный вентилятор обычно работает только в одном направлении, обеспечивая циркуляцию воздуха, поэтому мотор вентилятора достаточно только включать и выключать.

Компрессор — еще один пример, когда для правильной работы двигателя просто требуется подключение к трём фазам цепи питания переменного тока. Для таких применений обычно используется простое трёхфазное твердотельное реле, контактор или пускатель для подачи питания одновременно на все три обмотки статора мотора. Используется один входной сигнал управляющий контактором.

Варианты ТТР для реализации управления асинхронным двигателем с помощью монтируемых на панели приборов, дополненных охлаждающим радиатором

Коэффициент мощности для нагрузок асинхронных двигателей имеет довольно низкое значение ( Критерии выбора приборов для управления электродвигателями

Условия переходного тока также необходимо учитывать при выборе трёхфазных твердотельных реле для использования с электродвигателями. В зависимости от размера мотора и нагрузки, приложенной к статору, пусковой ток при первом включении может в 5-7 раз превышать нормальный рабочий ток.

Эта перегрузка, потенциально достигающая значения тока заторможенного ротора двигателя, будет постепенно уменьшаться до номинального значения тока полной нагрузки. Происходит это в течение нескольких циклов переменного тока по мере того, как электродвигатель начинает вращаться. Однако применяемое реле и соединения должны соответствовать перегрузкам, возникающим в процессе запуска.

Также необходимо учитывать возможность остановки электродвигателя при определённых условиях, когда линейный ток будет равен или больше тока заторможенного ротора. В этом случае необходимо использовать защиту от перегрузки по току, как твердотельного прибора ТТР, так и самого электродвигателя.

Для надежности и безопасности рекомендуется обеспечить защиту от переходных процессов для всех твердотельных реле, управляющих трёхфазными асинхронными моторами. Такая защита может быть доступна внутри прибора ТТР или применяться внешним модулем.

Чаще всего используются варисторы, хорошо рассеивающие мощность, но несколько медленно реагирующие на быстрые переходные процессы. Однако двунаправленные диодные ограничители бросков напряжения (TVS-диоды) обеспечивают оптимальные характеристики для быстрых переходных процессов, несмотря на более низкие показатели рассеяния мощности, чем у варисторов на основе окиси металла.

Видеоролик — использование прибора под термо-резистивную нагрузку

На виде, представленное ниже, демонстрируется практическое применение прибора, в частности, для управления термо-резистивной нагрузкой (электрическими нагревателями). Внедряя в схему трёхфазные твердотельные реле, можно эффективнее управлять электрическими ТЭН.

Как правило, современные схемные решения предполагают использование приборов совместно с цифровыми микроконтроллерами, что позволяет полностью автоматизировать процесс работы.

При помощи информации: Crydom

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

управление твердотельным реле

в данный момент пишу диплом. стали интересны твердотельные реле, но никак не могу понять как ими управлять. да, я не далек, но хочу разобраться. по той информации которая есть на сайте, не догоняю — каким образом мы можем управлять током нагрузки через реле. (элементарно где клеммы для управления)

или я совсем далек и вообще ничего не смыслю?

твердотельные реле позволяют преимущественно коммутировать (включатьотключать) нагрузку дискретно, т.е. либо полностью включено либо отключено, и в данном случае заменяют обычные электромеханические реле и контакторы. это модификации твердотельных реле с обозначением хххххzd3 и хххххza (если смотреть маркировку реле Kippribor). здесь управление включением реле осуществляется с помощью подачи напряжения.
но есть и реле позволяющие регулировать выходное напряжение(модификации ххххххva). данные реле применяются преимущественно для управления мощностью нагревательных элементов. но управление таких реле осуществляется с помощью внешнего переменного резистора (покупается отдельно).

в любом случае на самих реле написано куда подключается управляющие цепи а куда силовые, не ошибетесь.

Доброго времени.
У мну задача такая: шкаф управления греющим кабелем управляется тупо пускателями (контакторами) от контроллера. Но при пуске греющего кабеля происходит стартовый бросок по току в два раза от номинала, что не есть хорошо для энергетиков.
Вот решил заменить контроллер и контакторы на ТТР (токи от 50 до 125А) С помощью какого прибора мне можно применить схемку управления.
ЗАДАЧА: Плавно разогнать кабель с задаваемым временем разгона по температуре воздуха. (Тут как правило осенью при +4С включается и гоняет весь сезон до +4С весны)

Доброе время. На данный момент стоит проблема: при пуске греющего кабеля в работу возникает большой пусковой скачек (превышает в два раза рабочий) по току.
Хочу решить эту проблему при помощи ТТР + ТРМ210. Задача стоит в том чтобы «разгонять» ток на кабель постепенно (согласно установленного времени 3, 5, 10 минут). Что посоветуете?. Наше потребеление порядка 1000 шт в год.)

для решения задачи управления мощностью греющего кабеля вариант применения температурного контроллера +ттр вполне целесообразен.

если у вас цель -регулирование температуры -то предложенный вами вариант трм210+ттр подойдет.

если у вас первоочередная цель не плавное увеличение температуры а именно ограничение потребляемой нагревателем мощности из сети, то указанный выше вариант не подойдет, поскольку изначально ттр предназначены для решения задачи регулирования именно мощности нагрева нагревателя методом шим. а следовательно при каждом имульсе включения ттр будет проходить «пусковой» ток нагревателя. в данном случае вам необходимо использовать иной вариант, например прибор трм251(либо трм151) + бкст (либо буст) +симисторы. регулятор должен иметь возможность программного ограничения нарастания мощности для вашей задачи -потому трм210 не подойдет.

P.s. планируется выпуск ттр со входом 4. 20ма либо 0..10в (какие в первую очередь пока немогу сказать), но когда они появяться в продаже вашу задачу можно будет решить гораздо проче: трм251 (трм151) с аналоговым выходом + ттр с аналоговым входом.

позвольте спросить а разве у приборов трм251(либо трм151) есть возможность программного ограничения нарастания мощности?

Да в ТРМ251 есть в явном виде возможность ограничения выходной мощности, но для задачи Monstr-a если речь в продолжение его диалога, необходимо оперировать параметром «Максимальная скорость изменения выходной мощности» (параметр P.rES)

Купили твердотельные реле с управлением 3-32VDC:mad: (лучше б заказали с 90-250VAC) и 2ТРМ1 для управления им и теперь наш «спец» не может их подключить без применения дополнительного оборудования в виде реле или пускателя, что приведёт к абсурдности задумки. Что подскажете?

. я так понимаю у вас прибор с релейным выходом.

Читайте также  Требования к пожарной сигнализации в магазине

Если к каждому прибору подключается только одно, два реле то вполне можно обойтись имеющимся на борту приборов ТРМ источником питания 24В (если он не задействован для питания входных цепей датчиков). Скорее всего это ваш вариант и ничего вам не потребуется дополнительно!

Если к прибору подключается несколько твердотельных реле то мощности встроенного источника питания может не хватить для управления реле, поэтому потребуется внешний блок питания 24В.

В любом случае максимум что вам потребуется это источник питания 24В, можно любой даже не стабилизированный.

А лучше изначально заказывать приборы либо с выходом под твердотельное реле (тип «Т») или бесконтактны выход (тип К, С), либо ТТР с управлением сетевым напряжением (модификация . ZA2), либо дополнительно брать блок питания.

Твердотельное реле

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) — это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, н о имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Виды твердотельных реле

Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле

Такие релe используются в печатных платах и предназначены для коммутации (переключения) малого тока и напряжения.

На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике

А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках

Слева однофазное реле, справа трехфазное.

Если через коммутируемые контакты силовых реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят на радиаторы, которые рассеивают тепло в окружающее пространство.

Твердотельные реле по типу управления

ТТР могут управляться с помощью:

1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.

2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.

3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.

Твердотельные реле по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным током управление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока, а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

С фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями. Вот небольшая табличка-подсказка для этих типов реле

Давайте еще раз взглянем на наше ТТР

SSR — это значит однофазное твердотельное реле.

40 — это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер.

D — тип управляющего сигнала. От значения Direct Current — что с буржуйского — постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем «плюс», а на №4 мы подаем «минус».

А — тип коммутируемого напряжения. Alternative current — переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась! Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле.

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Плюсы и минусы твердотельного реле

  • включение и выключение цепей без электромагнитных помех
  • высокое быстродействие
  • отсутствие шума и дребезга контактов
  • продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
  • возможность работы во взрывоопасной среде, так как нет дугового разряда
  • низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
  • надёжная изоляция между входными и коммутируемыми цепями
  • компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
  • небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)

Твердотельное реле

2017-05-25 Промышленное 8 комментариев

Твердотельное реле ( SSR — Solid State Relay) — это разновидность обычного электромеханического реле или контактора, нашедшая на сегодняшний день широкое применение в промышленности.

То есть также как и обычное реле, твердотельное служит для коммутации мощной нагрузки с помощью небольшого управляющего сигнала. В отличии от электромеханического реле твердотельное не имеет механических подвижных контактов, оно выполнено полностью на полупроводниковых элементах.

Это позволяет значительно повысить срок эксплуатации реле, избавиться от шума и дребезга контактов, сократить собственное энергопотребление, исключить электромагнитные помехи при включении, увеличить быстродействие.

Но с другой стороны у твердотельных реле есть и ряд минусов.

Во первых твердотельные реле при работе сильно нагреваются, что обусловлено электрическими потерями на силовых полупроводниковых элементах. И чем больше мощность нагрузки, тем больше нагрев.

Поэтому им необходимо обеспечить хороший теплоотвод. Для этого необходим охлаждающий радиатор, а при «тяжелых» режимах работы еще и вентилятор. Нормальной температурой реле, не влияющей на снижение эффективности работы считается примерно 40°C. При повышении температуры до 60°C твердотельные реле могут работать нестабильно, даже выйти из строя.

Во вторых это конечно цена, которая на сегодняшний день превышает цену обычных контакторов в несколько раз.

В третьих необходимо помнить, что твердотельные реле всегда необходимо выбирать с запасом по номинальному току в 2-4 раза, а в случае с индуктивной нагрузкой в 6-10 раз, что неизбежно приводит опять же к увеличению стоимости реле.

Но даже несмотря на эти недостатки, при грамотном подходе к выбору использование твердотельных реле полностью себя оправдывает. Например там, где частота включений-выключений нагрузки очень высокая, обычные контакторы могут не справляться со своими обязанностями из-за ограниченного ресурса коммутаций, а твердотельные реле могут спокойно работать годами. Наиболее широко твердотельные реле применяются в системах нагрева и температурного контроля.

Принцип действия твердотельных реле

Принцип действия твердотельного реле следующий: управляющий сигнал через оптопару, которая обеспечивает гальваническую развязку, поступает на схему управления, которая управляет выходным ключом. В качестве выходного ключа могут применяться тиристоры, симисторы — при работе на переменном токе и транзисторы — при работе на постоянном токе.

По способу коммутации твердотельные реле делятся на два основных типа:

Читайте также  Преимущества и недостатки двухтарифных счетчиков

— управление с контролем перехода через 0

Данный метод заключается в том, что при подаче управляющего сигнала на вход, на выходе реле включится только когда значение переменного напряжения достигнет нулевого уровня. Благодаря такому методу уменьшается начальный бросок тока, снижается уровень электромагнитных помех. Минус такого типа реле в том, что они не способны коммутировать высокоиндуктивную нагрузку.

Реле данного типа используются для коммутации резистивных (ТЭНЫ, лампы накаливания), емкостных ( помехоподавляющие фильтры), слабоиндуктивных нагрузок (соленоиды, клапаны).

— фазовое управление

Данный метод интересен тем, что при изменении какого-либо параметра на входе, на выходе можно менять величину выходного напряжения, тем самым регулируя мощность нагрузки.

Реле такого типа можно управлять индуктивными и резистивными нагрузками, регулировать мощность нагревательных элементов.

Как правильно подобрать твердотельное реле

На правильный выбор ТТР в первую очередь влияют такие параметры как:

  • ток нагрузки — номинальный, пусковой
  • тип нагрузки — индуктивный, резистивный, емкостной
  • коммутируемое напряжение — переменное, постоянное. Для переменного также имеет значение количество фаз.
  • управляющее напряжение — переменное, постоянное

Расшифровка номенклатуры твердотельных реле

На примере реле BDH 20044 ZD3 фирмы KIPPRIBOR рассмотрим как расшифровываются их технические характеристики:

B — Тип корпуса промышленного исполнения

D — Однофазное реле

H — Тип выходного силового элемента — тиристор SCR типа на керамической подложке. Представляет из себя полупроводниковый ключ, выполненный методом нанесения на металлическое основание изолирующей керамической подложки, на которую затем наносятся кристаллы полупроводниковой структуры тиристора.

200 — максимальный допустимый ток нагрузки

44 — Номинальное коммутируемое напряжение 440 V AC

ZD3 — Тип управляющего сигнала коммутируемого напряжения 3-32 DC коммутация переменного тока

Подключение твердотельных реле

В качестве нагрузки возьмем обычную лампу накаливания. Один провод подключаем напрямую на лампу.

В разрыв другого провода подключаем выходные контакты реле.

На входные контакты соблюдая полярность подключаем источник питания постоянного тока, в моем случае 12В. На белый провод подключаем плюсовой вывод, на красный — минус.

И выходные контакты сработали, лампа загорелась. О срабатывании реле также сигнализирует светодиод на его корпусе.

Твердотельные реле — примеры использования и подключения

Для коммутации нагрузок в различном оборудовании обычно используются контакторы и реле. Всем известны основные минусы этих устройств – подгорание контактов и наличие подвижных частей. От этих недостатков полностью свободны Твердотельные реле (ТТР), которые всё шире и шире используются в промышленном оборудовании.

В статье рассмотрим подключение и электрическую защиту твердотельных реле, а также различные примеры применения.

Варианты использования

ТТР имеет смысл ставить там, где нет возможности контролировать работоспособность обычных электромеханических реле. Да, ТТР дороже, но основное их преимущество – «поставил и забыл». Часто их ставят для коммутации индуктивной нагрузки (электромагниты), для которой обычные реле подходят слабо – контакты подгорают быстро, нужно их чистить или менять. Либо ставить реле на заведомо больший ток работы.

Другой вариант использования ТТР – включение мощной нагрузки типа ТЭНов, когда мощные контакторы прослужат недолгое время из-за частых включений-выключений. Такое бывает в случае, когда нужно точное поддержание температуры, а для этого устанавливают небольшую ширину петли гистерезиса.

Как и в случае с контакторами и реле, ТТР легче работать, когда нагрузка чисто активная (АС1), то есть не содержит индуктивности (cosφ стремится к 1). Тогда он легко может коммутировать ток, указанный на его корпусе. В большинстве же случаев нагрузка является частично реактивной (cosφ = 0,7-0,8), поэтому ток ТТР нужно всегда выбирать с запасом.

Запас по току нужен также и для надежной работы системы защиты, но об этом расскажем чуть позже.

Коммутация ТЭНа нагревателя

В этом примере, как мы уже отмечали выше, ТТР работает в самом простом режиме – коммутация напряжения питания 220 В для ТЭНа. Реле рассчитано на ток 40 А, для однофазного напряжения 220 В это означаем максимальную мощность 8,8 кВт.

Однако, в целях повышения надежности в данном случае никто не будет подключать через ТТР ТЭНы мощностью 8 кВт. Обычно, даже в этом случае выбирают запас 50 %, не менее. В данном примере применяется ТЭН на 1,5 кВт. Защита обеспечивается автоматическим выключателем с номинальным током 10 А.

Управление твердотельными реле

Фактически ТТР – это управляемый коммутатор. В каком-то смысле, обычный транзистор является твердотельным реле – при подаче управляющего сигнала он открывается, и пропускает ток в нагрузку.

В ТТР в более чем 90% случаев в качестве управляющего сигнала нужно постоянное напряжение. Диапазон напряжений – от 3 до 35 В, и может быть разным для разных моделей и производителей..

В редких случаях (в зависимости от модели) в качестве управляющего сигнала применяют переменное напряжение (порядка 100…250 В), токовый сигнал 4…20 мА, либо для управления используют обычный потенциометр.

Схема подключения проста, и обычно приводится на корпусе ТТР:

Приведенная схема включения твердотельного реле является наиболее распространенной. На управляющий вход ТТР подается постоянное напряжение порядка 12…24 В. Подача напряжения производится от внешнего источника питания через любой подходящий коммутирующий элемент – кнопка, переключатель, транзистор, реле. На работу ТТР не оказывает влияния схема включения и принцип действия схемы на его входе. Важен лишь сам факт подачи напряжения нужного значения и полярности.

В ТТР с управляющим сигналом в виде переменного напряжения принцип работы аналогичный.

В большинстве моделей ТТР реализована светодиодная индикация подачи управляющего сигнала, что позволяет «на лету» отслеживать и анализировать работу ТТР.

Силовая часть ТТР

Эта важная часть ТТР коммутирует ток нагрузки.

Входная и выходная части твердотельного реле гальванически развязаны при помощи оптопары. Твердотельное реле не имеет отдельного источника питания. И если входная часть ТТР питается от входного источника питания, то выходная часть питается через нагрузку, получая питание при условии, что эта нагрузка подключена.

Таким образом, если нагрузка имеет высокое сопротивление, с одной стороны, это хорошо – меньше ток через реле, и оно меньше испытывает перегрузки, работая с большим запасом. Но если этот ток продолжить уменьшать, ТТР просто не сможет работать – хотя, входная индикация будет показывать, что всё нормально.

Коммутация индуктивной нагрузки

С индуктивной нагрузкой (как правило, это электромагнит), не так всё просто.

В этом случае нужно учитывать переходные процессы в моменты включения и выключения ТТР. В эти моменты возможны всплески напряжения, которые могут привести к неприятным последствиям, например – «зависание» ТТР в открытом или закрытом состоянии, которое снимается перезапуском питания. Самый неприятный вариант – ТТР может полностью выйти из строя, при этом оно может остаться в опасном включенном состоянии.

Существуют особенности при подключении индуктивной нагрузки типа электромагнитов. Производители рекомендуют выбирать пару ТТР-электромагнит таким образом, чтобы ток нагрузки был не более чем 10% от максимально допустимого тока ТТР. Это обусловлено возможной нестабильностью работы. Кроме того, при коммутации постоянного тока рекомендуется параллельно нагрузке подключать обратно включенный диод.

Защита

Большинство производителейрекомендуют в качестве защиты устанавливать быстродействующие предохранители. Это нужно для того, чтобы в случае перегрузки или короткого замыкания нагрузки не произошло поломки ТТР.

Однако, поскольку стоимость таких предохранителей сопоставима со стоимостью самого ТТР, существует вариант установки вместо предохранителей защитных автоматов. Причем, производители рекомендуют только защитные автоматы с время-токовой характеристикой типа «В».

Чтобы пояснить принцип защиты, рассмотрим известные графики время-токовых характеристик автоматических выключателей:

Из графика видно, что при превышении тока защитного автомата с характеристикой «В» более чем в 5 раз время его выключения – около 10 мс (пол периода напряжения частотой 50 Гц).

Из этого можно сделать вывод, что для того, чтобы иметь большие шансы по сохранению работоспособности ТТР в случае КЗ, нужно применять защитные автоматы с характеристикой «В». При этом нужно соответственно рассчитывать токи нагрузки и защитного автомата в зависимости от максимального тока твердотельного реле.

Пример неправильной защиты ТТР

Случаются грубые ошибки в проектировании систем на ТТР. Пример – электронагреватель приточной вентиляции мощностью 18,5 кВт, питаемый через трехфазное твердотельное реле с рабочим током 25 А. Основная проблема в том, что защищается это ТТР через автоматический выключатель с номинальным током 25 А и время-токовой характеристикой С.

Даже в случае частичного превышения рабочего тока (например, до 35 А) в первую очередь выгорит ТТР, при этом время отключения защитного автомата – около 1 часа.

admingkrosenergo/ автор статьи
Понравилась статья? Поделиться с друзьями:
Gk-Rosenergo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: