Инструкция по выбору теплового реле для защиты электродвигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклоне

Инструкция по выбору теплового реле для защиты электродвигателя

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т — температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Читайте также  Защита деревянной стены от печи в бане

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Выбор теплового реле для электродвигателя

Тепловое реле РТЛ для электродвигателя

Тепловое реле служит для тепловой защиты электродвигателя. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно.

Подробнее про эти характеристики – здесь.

Важно, что спасти от короткого замыкания тепловое реле не может – просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят автоматический выключатель, предохраняющий от КЗ.

Во всех современных “теплушках” есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.

Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные контакты пускателя. И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации.

На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей.

Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Такие тепловые реле можно применять только для контакторов советских разработок типа ПМЛ, для других производителей тепловые реле РТЛ могут не подойти.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Распространенные марки тепловых реле – РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке – во второй строке внизу вместо “РТЛ-ЮООМ” следует читать “РТЛ-1000М”. Кто-то распознавал бездумно.

• Выбор теплового реле / Выбор электротеплового реле — таблица параметров, pdf, 34.01 kB, скачан: 6743 раз./

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Такое тепловое реле ставится на пускатель ПМЕ.

Подробно про схему подключения теплового реле и схему подключения пускателя к трехфазному двигателю рассказано в другой моей статье. Рекомендую.

Книги по электродвигателям

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 6570 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 2092 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1205 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1028 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2112 раз./

Читайте также  Какие средства защиты используют в электроустановках напряжением до 1000 Вольт?

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1302 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2301 раз./

• Таблица выбора теплового реле. / Выбор теплового реле., pdf, 34.01 kB, скачан: 3880 раз./

• Иноземцев Е.К. Ремонт асинхронных электродвигателей / Иноземцев Е.К. Ремонт асинхронных электродвигателей электростанций. Рассмотрены конструкция и техническая характеристика асинхронных электродвигателей серий А, АО. А2, А02,4А, АИ, 5А, 6А, А, КА, АДА, ДАН, АН, АД, 2 АС ВО, 4МТН, А2К, А2КП, ДАСК, ВРА, АВР, АВРМ, 2ВРМ, ЗВРМ, ВРПВ, АИУВ, ВРФВ, АВТ. Изложена технология ремонта электродвигателей и их узлов, разборочно-сборочных работ. Приведены приспособления для выполнения работ с учетом передовых методов ремонта и технологий. Рассмотрены вопросы сушки электродвигателей, а также электрических испытаний и измерения обмоток., djvu, 1.84 MB, скачан: 572 раз./

• Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором / Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором. 2000 — 72 с; ил. [Библиотечка электротехника, приложение к журналу «Энергетик», Вып. 7(19)]. Рассмотрены особенности применения трехфазного асинхронного двигателя в качестве конденсаторного, а также различные схемы включения. Даны простые соотношения для определения рабочей емкости конденсатора. Приведены основные технические данные трехфазных асинхронных двигателей серий КА и 4А (сельскохозяйственного назначения), а также конденсаторов различных типов., djvu, 1.84 MB, скачан: 701 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1677 раз./

Тепловое реле для электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Тепловое реле двигателя – аппарат, предназначенный для его защиты от перегрузок, приводящих к перегреву обмоток и, как следствие, к преждевременному старению или разрушению изоляции. А двигатели — устройства очень дорогие, часто устанавливаются в ответственных узлах технологической схемы. Работоспособность их и возможность профилактического своевременного ремонта и обслуживания очень важны. Вот поэтому выбор теплового реле очень важный вопрос при сборке схемы питания и защиты этих электроаппаратов.

Как выбрать тепловое реле? Правильнее всего выполнять подбор теплового реле по мощности двигателя, а если быть точнее, то по номинальному току обмоток. Каждый двигатель имеет заводскую маркировку или паспорт, в которых указаны его характеристики. В примере приведена табличка на двигатель мощностью 0,55 кВт, с номинальными токами 2,7/1,6 А и номинальным напряжением 220/380 В при соединении обмоток, соответственно, по схемам Δ/Y.

Если табличка частично повреждена, но остались некоторые данные, то номинальный ток по разным схемам соединения обмоток можно вычислить по формуле:

Например, номинальный ток двигателя для обмотки, соединенной в звезду составит:

Рассматривая условия выбора теплового реле, следует обратить внимание на такие его основные параметры, как:

— номинальное напряжение и род тока, которые должны соответствовать подключаемой сети;
— номинальный ток реле;
— диапазон токовых уставок, настройка которых как раз выполняется для обеспечения тепловой защиты;
— класс расцепления от 5 до 40, регламентируемый ГОСТ Р 50030.4.1-2012, который определяет время срабатывания реле при одних и тех же нормируемых кратностях перегрузок. Реле с высоким классом (20,30) предназначены для тяжелых условий пуска двигателей. Расчет и выбор тепловых реле с учетом класса расцепления позволяет предопределить время срабатывания теплового реле с отстройкой от времени пуска двигателя.

Как видно, какой — то специфический расчет теплового реле не требуется. Зная номинальный ток двигателя, достаточно подобрать реле по соответствующему номинальному току и диапазонам регулировок токовых уставок. Далее у реле необходимо выставить уставку, равную номинальному току двигателя. Этот ток называется, по-другому, «током несрабатывания», так как при длительном протекании тока данной величины устройство не сработает. В соответствии с ГОСТ 16308-84 и заводскими инструкциями тепловое реле при температуре окружающего воздуха около (25±10)°С в установившемся тепловом состоянии сработает в течение 20 мин при токе, равном 1,2 токовой уставки, то есть при перегрузке 20 %. И чем выше ток перегрузки, тем быстрее это произойдет. Необходимая токовая уставка устанавливается специальным регулятором.

Также можно сделать подбор теплового реле по мощности двигателя для конкретного типоисполнения реле с соответствующими токовыми уставками по таблицам и рекомендациям, приведенным производителями в инструкциях или в технической информации. Линейки выпускаемых тепловых реле достаточно обширны у разных производителей. Подобрать подходящий защитный аппарат под свои нужды не составит труда. Таблица ниже приведена для реле типа РТЛ.

Еще в заводской документации можно найти время — токовые характеристики, представленные в виде нелинейных графиков.

Зная мощность и ток, потребляемые двигателем, используя приведенные производителями графики и меняя токовую уставку, можно при необходимости корректировать время срабатывания. Коррекцию необходимо производить для исключения ложных срабатываний, обусловленных зачастую особенностями рабочих режимов работы двигателей.


Стоит при выборе также учитывать, что конструктивно тепловые реле бывают электромеханические или электронные. Электронные реле имеют более сложное устройство за счет наличия электронных схем, получающих информацию от встроенных измерителей.

Монтироваться реле могут непосредственно на контакты пускателя или контактора, либо устанавливаться индивидуально отдельностоящими с применением рекомендованных производителем клеммников.

Как подобрать тепловое реле для защиты электродвигателя?

При длительной работе электрический двигатель имеет тенденцию перегреваться. Слишком большая мощность, проходящая по цепи, повышает температуру устройства. В результате обмотки перегреваются, а изоляция портится. Это приводит к замыканию между витками, которое провоцирует выгорание полюсов мотора. Даже возникновение одной из перечисленных проблем влечет за собой сбой в работе механизма и обязательный ремонт, который существенно ударит по бюджету.

Чтобы этого избежать, в цепь питания устанавливают тепловое реле для защиты. Оно «считывает» номинал тока, проходящий по цепи, и если он длительное время превышает норму – размыкает контакты. Прекращается подача тока, а электрический мотор останавливает работу. Но чтобы реле работало правильно, необходимо учитывать несколько особенностей.

Главное о конструкции.

Существуют разные виды реле, но основные элементы у них одинаковы. Главное – биметаллическая пластина, которая запускает работу механизма. Это самый чувствительный элемент в конструкции. В зависимости от температурных показателей, в которых находится прибор, меняется время срабатывания. Если температура растет, оно уменьшается. Это небольшая, но важная погрешность. Поэтому при выборе отдавайте предпочтение пластинам с большой температурой.

Сама биметаллическая деталь крепко зафиксирована на оси реле. Для регуляции значения тока используют шунты, которые закрепляются в корпусе. Иногда внутри реле можно найти нихромовые нагреватели. Их придется подключать отдельно, по одной из схем: параллельной или последовательной. Также в комплект включена пружина цилиндрической формы, которая одним концом касается пластины, а другим прикреплена к изоляционной колодке. Если ток перегрузки превышает уставной или равен ему длительное время, колодка поворачивается (под воздействием биметалла), разрывая контакт.

Основные обозначения.

Прежде чем решать, какой вид защиты подойдет, нужно узнать расшифровку маркировки прибора. На корпусе и в паспорте устройства указан:

1. Рабочий ток. Реле срабатывает, когда напряжение доходит до этого значения.

2. Номинал тока для биметаллической пластины. Это то значение, при превышении которого устройство не отключится сразу же.

3. Время-токовые характеристики. Время срабатывания устройства в зависимости от величины напряжения.

4. Токовый диапазон. Он определяет, при каких параметрах реле работает.

5. Крайние токовые уставки.

В паспорте указывают и дополнительные сведения, например, данные для монтажа или способности работы прибора при наличии опасных веществ.

Методика выбора.

Каждый электрический двигатель имеет свой диапазон мощности, в зависимости от этого и нужно выбирать реле. Ориентируемся на номинал тока, который обозначается символом In. Он написан на корпусе устройства и в инструкции. Обычно указывают две цифры, первую для сети мощностью 220 вольт, а вторую для 380 вольт. Далее анализируем характеристики прибора и реле, сравниваем их. При рассмотрении время-токовых параметров учитывайте, что время срабатывания их холодного и перегретого состояния будет разным.

Обычно перед покупкой просматривают специальную таблицу, в которой приведены технические характеристики реле различных видов. Так легче подобрать оптимальный вариант. И у мотора, и у реле защиты есть специальная кривая, на которой изображена зависимость токопрохождения от величины тока. Для бесперебойной работы обоих устройств эта кривая должна быть разной. У двигателя она должна находиться выше.

Главное правило: номинальный ток мотора = уставке тока срабатывания. То есть, чтобы механизм начал разрыв цепи, необходима перегрузка минимум в 20-30%.

Для этого ток несрабатывания реле должен хотя бы на 12% превышать номинал двигателя. Во всех таблицах с характеристиками реле данные приводятся в амперах.

Если данных нет в паспорте.

Бывают ситуации, когда номинальное напряжение устройства неизвестно. Паспорт может быть утерян, данные на корпусе смазаны. Обычно такое случается у тех, кто покупает с рук. Но положение можно исправить несколькими способами:

1. Использовать специальное оборудование, которое автоматически определяет время-токовые показатели (токовые клещи и мультиметр). Анализируют каждую фазу.

2. Если известна хотя бы часть данных, можно найти в Интернете полную информацию. На сайтах производителей часто предлагаются таблицы с характеристиками выпускаемых марок.

Возвращаясь к подбору тепловых реле стоит упомянуть, что важную роль играет страна производства. Европейские аппараты стандартно считаются качественными, но не всегда приспособлены для функционирования в наших условиях. Многие отечественные производители придерживаются мировых стандартов и при этом учитывают особенности местного климата и самих приборов. Кроме того, легче прочитать инструкцию на родном языке, чем мучиться с переводом. Хотя схема подключения реле стандартная, с небольшими нюансами в зависимости от вида устройства. Что касается китайских производителей, то многие из них, например компания CHINT, ориентируются на российского потребителя. При этом качество соответствует европейским брендам.

Читайте также  Защита от грозы электрооборудования

Термозащита электродвигателей

Внутренняя защита, встраиваемая в обмотки или клеммную коробку

Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

  • Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.
  • При высокой температуре окружающей среды.
  • Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.
  • Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

  • Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
  • Число уровней и тип действия (2-я цифра)
  • Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

Только медленно (постоянная перегрузка)

1 уровень при отключении

2 уровня при аварийном сигнале и отключении

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

2 уровня при аварийном сигнале и отключении

Только быстро (блокировка)

1 уровень при отключении

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.

Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).

Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.

По сравнению с PTO терморезисторы имеют следующие преимущества:

  • Более быстрое срабатывание благодаря меньшему объёму и массе
  • Лучше контакт с обмоткой электродвигателя
  • Датчики устанавливаются на каждой фазе
  • Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111

Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле.

Алексей Бартош/ автор статьи
Понравилась статья? Поделиться с друзьями:
Gk-Rosenergo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: