Какие бывают помехи в электросети и как от них защититься

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.Единая энергосистемаПочти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным ком...

Какие бывают помехи в электросети и как от них защититься

Негативные явления в электросети — их влияние на нагрузку и способы борьбы

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Единая энергосистема

Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение. Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор. Линейное напряжение 380 В используется для питания мощного промышленного оборудования. Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП). Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км. Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий. Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям. У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного. В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы. В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически — по команде диспетчера с центрального пульта, и вручную — приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки. В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты). Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие «нормы качества электрической энергии в системах электроснабжения общего назначения«.

Параметр Номинал Предельно
Напряжение, V 220V ±5% 220V ±10%
Частота, Hz 50 ±0,2 50 ±0,4
Искажения, % 8 12
Провалы, сек 3 30
Перенапряжения, V 280 380

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории. Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973. Первая категория требует надежности 1 и временем устранения аварии 0.

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%. Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе. Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как «свет мигнул». В подобной ситуации все незащищенное компьютерное оборудование «перезагрузится» или «зависнет».

Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого «перекоса фаз» — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение. Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля. В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.

Способы противодействия негативным воздействиям

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействия Следствие негативного воздействия Рекомендуемые меры защиты
Импульсный провал напряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряжения Перегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения. Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряжения Выключение оборудования. Потеря данных в компьютерных системах. Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжение Перегрузка оборудования. Увеличение вероятности выхода из строя. Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения. Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры. Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения) Перегрузка трехфазного оборудования. Выравнивания нагрузки по фазам. Содержание в исправности силовой кабельной сети.
Отклонение частоты сети Нарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети. Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств. Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования. Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Какие бывают помехи в электросети и как от них защититься?

Вероятно, каждый читатель этой статьи обратил внимание на то, что большинство электрических приборов, работающих от бытовой сети, рассчитаны на напряжение 220 В/50 Гц. Отсюда вывод – именно такие параметры обеспечивает нам поставщик электроэнергии. К сожалению, это не совсем так. Мы можем предположить, что водопроводная вода совершенно чистая, однако опыт подсказывает, что в ней присутствуют примеси, ухудшающие вкус. Такие же «примеси», в виде дополнительных частот и импульсов, поступают к потребителю электроэнергии. Это и есть помехи в электросети.

Читайте также  Какие средства защиты используют в электроустановках напряжением до 1000 Вольт?

Классификация помех

Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.

Причиной возникновения сетевых искажений являются:

  • природные явления (гроза, ионизация воздуха сияниями и т.п.);
  • техногенные влияния (аварии на линиях, коммутация мощных устройств и т. д.);
  • электромагнитные волны природного и техногенного происхождения.

Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.

Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.

Рис. 1. Защитные импульсные фильтры

При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.

Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.

Источники помех

Искажать синусоиду переменного тока способны как природные явления, так и различные техногенное оборудование. В результате их действия происходят:

  • кратковременные провалы напряжения;
  • отклонения от номинальных частотных параметров;
  • изменения гармоники электричества;
  • колебания амплитуды тока;
  • ВЧ шумы;
  • импульсные всплески;
  • синфазные помехи.

Остановимся вкратце на основных источниках, вызывающих перечисленные отклонения.

Провалы напряжения.

Данное явление является следствием работы коммутационных устройств в энергосистемах. Это случается при возникновении КЗ на линиях, в результате запусков мощных электромоторов и в других случаях, связанных с изменениями мощности нагрузки. Наличие таких кратковременных помех является неизбежностью при срабатывании защитной автоматики, и они не могут быть устранены поставщиком электроэнергии.

Изменения частотных характеристик.

Отклонение от заданной частоты происходит в результате значительного изменения тока нагрузки. В случае если уровень потребляемой энергии превосходит мощность генерируемых установок, происходит замедление вращения генератора, что ведёт к падению частоты. При заниженной нагрузке возрастает частота генерации.

Автоматика регулирует распределение мощностей, вплоть до отключения нагрузок, однако частотные помехи в сети всё-таки присутствуют.

Гармоники.

Источником данного вида искажений является наличие в сетях оборудования с нелинейной вольтамперной характеристикой:

  • преобразовательные и выпрямительные подстанции;
  • дуговые печи;
  • трансформаторы;
  • сварочные аппараты;
  • телевизоры;
  • циклоконвертеры и многие другие.

Причиной гармонических искажений могут быть электродвигатели, особенно если они установлены в конце длинной линии.

Отклонение напряжения

Изменения стабильности потенциала происходит в результате периодических скачков потребляемого максимального тока. Источником изменения нагрузок являются устройства, регулирующие напряжение, например, трансформаторы с РПН.

График, иллюстрирующий кратковременное перенапряжение показан на рисунке 2 (Фрагмент А – изображает импульсный всплеск).

Рис. 2. Перенапряжение в сети

ВЧ помехи.

Создаются влиянием устройств работающих, в высокочастотном диапазоне. ВЧ помехи, вызванные действием приборов, генерирующих сигналы с высоким диапазоном частот, распространяются эфирно или через линии сети.

Импульсы напряжения.

Распространённые источники: коммутационные приборы в сетях и грозовые явления.

Несимметрия трехфазной системы.

Причиной таких помех часто являются мощные однофазные нагрузки как бытовые, так и промышленные. Они вызывают сдвиги углов между фазами и амплитудные несоответствия. Путём отключения питания мощных токопотребляющих устройств можно устранить проблему.

Способы защиты

К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.

Пример подавления помех показан на рисунке 3.

Рис. 3. График, иллюстрирующий фильтрацию тока

Эффективными являются следующие внешние устройства:

  • стабилизаторы напряжения;
  • ИПБ;
  • преобразователи частоты;
  • регулируемые трансформаторы;
  • сетевые фильтры и фильтрующие каскады (принципиальная схема простого фильтра изображена на рисунке 4).

Схема сетевого фильтра

Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.

Использование стабилизаторов напряжений оправдано в случаях наличия регулярных провалов напряжений в домашней сети. При стабильно заниженном или завышенном токе лучше пользоваться трансформатором.

Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.

Рисунок 5. ИБП

В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.

Методы измерения

Можно ли увидеть сетевые искажения?

С помощью приборов можно не только увидеть наличие помех, но и оценить их величину и определить природу появления. Существуют специальные высокоточные приборы для измерения различных отклонений в сетях. Наиболее распространённым из них является обычный осциллограф.

У прибора имеется дисплей (экран), на котором отображается осциллограмма измеряемого тока. Оперируя различными режимами осциллографа можно с высокой точностью определять характер и уровень шумов.

Пример осциллограммы показан на рисунке 6.

Рисунок 6. Осциллограмма сетевого тока

На осциллограмме видно как основной сигнал окружают паразитные токи, которые необходимо отсекать. Анализируя характер искажений можно выбрать способ их подавления. Часто бывает достаточно применить сетевой фильтр для того, чтобы избавиться от типичных помех, влияющих на работу устройств.

Типовые часто задаваемые вопросы от читателей

Как найти и устранить источник помех в электрической цепи, приводящий к невозможности использовать powerline?

Чтобы вычислить причину плохого сигнала, вам необходимо проанализировать работу powerline адаптера в другой линии или проверить уже подключенные устройства. Для начала проверьте уровень сигнала в сети роутера, возможно ресурсов вашего маршрутизатора недостаточно для перераспределения сети интернет между таким количеством пользователей. Если предоставляемого лимита достаточно для всех комнат и приемников в них, проверьте работу линий, по которым осуществляется передача данных powerline адаптерами.

Следующий вопрос – тип линии, к которой подключен powerline адаптер. Производитель не рекомендует использовать для этого удлинители, отдавая предпочтение стационарной проводке. Но, для проверки существующих линий рекомендую вам временно использовать удлинитель, если сигнал улучшиться, вполне вероятно, что причина в проводке. Если нет, проверьте бытовое электрооборудование, выступающее наиболее мощным источником электромагнитных помех.

К таковым относятся: кондиционеры, стиральные машины, холодильники, зарядные устройства для мобильных телефонов, блоки питания электроприборов.

По возможности powerline адаптер следует перенести как можно дальше от таких приборов, дабы они не вносили свои коррективы в качество передаваемого сигнала. Если такой возможности нет, подключите источники помех к электрической цепи через «сетевой фильтр», который поможет снизить вносимые искажения.

Еще один момент, на который следует обратить внимание – допустимое расстояние между powerline адаптерами. Оно де должно превышать установленную норму, иначе никакие ухищрения не помогут вам добиться должного качества сигнала.

Какие бывают помехи в электросети и как их убрать

Технологический прогресс последних десятилетий внес в жизнь человечества большое количество различных устройств и приспособлений. Сегодня многие люди не представляют возможным своё существование без компьютера, телевизора, холодильника и без различной бытовой техники.

Вся эта техника призвана помочь, а в некоторых случаях облегчить жизнь человека.

Давно известный факт – срок службы любого приспособления определяется качеством электрической сети. Повышение и понижение напряжения, различные помехи и скачки – неблагоприятные факторы, способствующие преждевременному выходу из строя любой техники. Какие существуют основные виды помех в электросети и как обезопасить себя от непредвиденных расходов?

Основные виды помех в электросети

Существует целая масса причин, из-за которых возникают различного рода помехи. В любой сети могут наблюдаться как импульсные, так и высокочастотные помехи. Первые возникают во время включения и выключения прибора и являются наиболее опасными для бытовой техники. Физически собой они представляют скоротечное повышение амплитуды напряжения. Резкий перепад напряжения является фатальными для многих микросхем, которыми оснащены современные устройства.

По своему происхождению все помехи можно разделить на два вида: вызванные природными и техногенными явлениями. Например, любая помеха может возникнуть из-за разряда молнии или из-за аварии на электрической подстанции.

Что касается высокочастотных помех, то здесь стоит отметить, что они наблюдаются в сети практически всегда. Полностью избавиться от них не представляется возможным. Наблюдать ВЧ-помехи можно во время работы холодильника, кофеварки и других приспособлений. Передаются они не только по проводам, но и по эфиру. Однако большой угрозы они не представляют и на срок службы домашней техники практически не влияют.

Как защитить домашние приборы от помех

На сегодняшний день существует несколько действенных способов по борьбе с различными физическими отклонениями в работе электросети:

  • стабилизатор напряжения;
  • источник бесперебойного питания;
  • сетевые фильтры.
Читайте также  Биометрическая защита данных что это?

Стабилизатор напряжения позволяет контролировать уровень напряжение в сети и, если произойдет резкий дисбаланс, устройство прекратит подачу электричества к потребителю. Сам стабилизатор подключается между источником напряжения и самим потребителем электроэнергии.

Стабилизатор – эффективный способ по защите бытовых приспособлений. Устройство прекращает подачу электроэнергии к потребителю в случае скачка напряжения в сети и, возобновляет подачу, когда напряжение нормализуется.

Правда такой способ борьбы с помехами не всегда подходит в качестве основного. Например, при работе с компьютером пользователю важно, чтобы все несохраненные текстовые данные не исчезли. В таком случае лучше всего использовать ИБП – источник бесперебойного питания. ИБП включает в себя обычный аккумулятор, который продолжает поддерживать компьютер в работоспособном состоянии еще некоторое время после случившихся помех и последующих перепадов напряжения.

Более дешевый способ придать домашней технике устойчивости перед помехами – сетевые фильтры. Они также хорошо справляются со своей задачей и применяют их чаще всего во время подключения крупной бытовой техники: холодильника, стиральной машины.

Как и чем измерить помехи

Измерить помехи в электросети и их прямое воздействие возможно с помощью специальных приборов. Приспособление подключается к источнику, в котором наблюдаются помехи. При этом важно правильно проводить подготовительные работы, которые подразумевают корректное подключение прибора к сети. В противном случае возникнет погрешность в показаниях, что усложнить дальнейший порядок действий по борьбе с помехами.

Всю работу можно осуществить, например, с помощью осциллографа. Прибор включается в сеть и на дисплее спустя некоторое время отображаются показатели напряжения и другие характеристики.

Полезное видео

Дополнительную информацию по данной теме вы можете почерпнуть из видео ниже:

Как защитить технику от перепадов напряжения

Содержание

Содержание

Внезапные перепады напряжения грозят плачевными последствиями для бытовой техники: выход из строя без надежды на ремонт. А для загородного дома в период летних гроз эта проблема становится наиболее актуальной. Почему происходят перепады и чем они опасны для техники? Как надежно защититься от скачков напряжения?

Чем опасны перепады напряжения

Перепад напряжения может быть вызван одновременным отключением нескольких мощных устройств, аварией на электросетях, нестабильной работой подстанции из-за перегрузки, эксплуатацией сварочного аппарата, низким качеством материалов электропроводки или ее монтажа. Нередко к существенному скачку напряжения приводит и удар молнии по линии электропередач.

Большинство перепадов незначительны и остаются незамеченными нами, но не техникой. Любой скачок, из-за которого напряжение в сети становится выше 250 Вольт, снижает срок службы подключенных устройств или дестабилизирует их работу. Даже несущественные отклонения на 5-10 %, происходящие регулярно, приводят к сбоям в управляющих блоках, сбросу настроек, возникновению помех. Перепады на 10-25 % сокращают срок службы приборов почти вдвое. А скачки напряжения до 300 Вольт выводят из строя блоки питания, управляющие и сенсорные панели, электродвигатели, сетевое оборудование.

В большинстве многоквартирных домов качество электропроводки оставляет желать лучшего, они не выдерживают нагрузки, ведь в каждой квартире одновременно работают десятки приборов. Безусловно, лучше поменять в квартире проводку, чтобы минимизировать вероятность перепадов и не довести до пожара. Но даже если нет такой возможности, обезопасить себя и родных можно.

Основной параметр при выборе устройств, способных защитить от перепадов напряжения, — это выходная мощность, которая берется из силы тока (указывается в амперах А) умноженной на напряжение (указывается в вольтах В). Ее величина, указываемая в вольт-амперах (ВA), должна соответствовать общей мощности, потребляемой приборами. Поэтому перед приобретением нужно посчитать общую мощность техники, которую вы планируете подключить.

Сетевые фильтры

Так называемый сетевой фильтр — это зачастую просто разветвитель/удлиннитель, защитные функции у которого либо фактически отсутствуют, либо являются минимальными и способны защитить только от перегрузки или короткого замыкания.

Однако среди «обманок» прячутся и настоящие сетевые фильтры, которые с помощью LC-контура фильтруют высокочастотные помехи в сети. Стоимость таких устройств, естественно, выше, но для некоторых видов техники наличие полноценной фильтрации необходимо. У приборов с LC-контуром есть характеристика «Подавление электромагнитных / радиочастотных шумов». Если вам нужен такой вариант, обращайте на нее внимание.

Стабилизаторы напряжения

Если подаваемое напряжение в сети не соответствует заданным нормам, стабилизатор нормализует его. К тому же стабилизатор повторяет функции хорошего сетевого фильтра: защита от короткого замыкания, от перенапряжения и высоковольтных импульсов, а также фильтрация помех. Маломощные стабилизаторы можно устанавливать для отдельного электроприбора, например, для холодильника, так как этот прибор наиболее болезненно реагирует на скачки напряжения. Супермощные стабилизаторы устанавливаются для всей сети, такие модели наиболее полезны для загородных домов или в районах, где с напряжением постоянные проблемы.

В сетях 220 Вольт используются однофазные стабилизаторы, в сетях 380 Вольт — три однофазных либо один трехфазный. Хороший стабилизатор хоть и стоит в разы дороже сетевого фильтра, однако он реально защищает технику от серьезных перепадов напряжения и обеспечивает стабильную работу.

Источники бесперебойного питания (ИБП)

ИБП объединяет в себе функции сетевого фильтра и стабилизатора (кроме резервного типа), но помимо этого позволяет технике работать еще какое-то время после отключения электропитания. Бесперебойники бывают трех типов: резервные, интерактивные и с двойным преобразованием.

Резервный вариант — самое простое и дешевое решение. Он пропускает ток через LC-контур, как в хороших сетевых фильтрах, а если необходимое напряжение отсутствует, осуществляется переключение на аккумуляторы. К недостаткам резервных бесперебойников можно отнести задержку при переключении на батареи (5 – 15 миллисекунд).

Интерактивные ИБП оснащены ступенчатым стабилизатором, позволяющим поддерживать надлежащее напряжение на выходе без использования батарей, что увеличивает срок их службы. Такие источники бесперебойного питания годятся для ПК и значительной части бытовой техники.

Бесперебойникис двойным преобразованиемпреобразуют полученный переменный ток в постоянный, а на выходе подают снова переменный с необходимым напряжением. Аккумуляторные батареи при этом все время подключены к сети, переключение не производится. ИБП данного типа отличаются более высокой стоимостью, в то же время создают больший шум при эксплуатации и сильнее нагреваются. Применяются в основном для требовательного к надежности питания оборудования: серверов, медицинское оборудования.

Реле напряжения

Реле напряжения, также называемые реле-прерывателями, производят размыкание электрических цепей при перепадах напряжения. После отключения питания реле через небольшие временные интервалы проверяет состояние напряжения, и при нормальных значениях возобновляет подачу тока.

Некоторые модели оснащения регуляторами, позволяющие настраивать реле под разные приборы, устанавливая верхний и нижний предел перепадов для отключения, а также время последующей активации. Существуют модели реле-прерывателей как для монтирования в электрощиток, так и для отдельной установки в розетку.

Защита от импульсных перенапряжений в загородном доме

Понятие «Защита от импульсных перенапряжений» всё чаще появляется в нормативных документах, в статьях на просторах Интернета и в каталогах оборудования различных производителей. Вопрос защиты от импульсных перенапряжений весьма сложен и неоднозначен. Поэтому владельцы загородных домов для решения этой задачи часто привлекают сторонних специалистов. А чтобы помочь определиться с выбором оптимального варианта, в этой части курса Академии FORUMHOUSE специалист компании Legrand расскажет об основных правилах и положениях по защите от импульсных перенапряжений.

Содержание

  • Причины возникновения импульсных перенапряжений (ИПН)
  • Как защититься от ИПН в частном доме

Причины возникновения импульсных перенапряжений

Импульсное перенапряжение (ИПН) достаточно опасное явление, представляющее собой кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей, с длительностью, как правило, до 1 мс. Причинами возникновения ИПН являются:

  • Грозовые разряды, создающие мощные импульсные перенапряжения, возникающие в результате прямого попадания молнии в сеть электропитания, молниеотвод. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА, напряжением до 1000 кВ. Последствиями прямого удара могут быть пожары, поражение людей и оборудования.
  • Электромагнитные импульсы от разряда молнии на удалении от объекта. Наведенный грозовой потенциал в сетях, может создавать импульсные перенапряжения в десятки кВ. Возможные последствия: выход из строя электронных приборов, потери баз данных.
  • Коммутационные процессы, связанные с переключениями трансформаторов, мощных электродвигателей, а также ступенчатыми изменениями нагрузки и отключениями устройств защиты при сверхтоках. Импульсные перенапряжения, возникающие в таких случаях, могут вывести из строя чувствительное электронное оборудование. Например, при отключении разделительного трансформатора мощностью 1000 ВА 230/230 В от сети вся запасенная трансформатором энергия «выбрасывается» в нагрузку в виде высоковольтного импульса напряжением до 2000 В.

Самые большие неприятности импульсные перенапряжения приносят владельцам коттеджей и дачных домов. Это обусловлено особенностями инфраструктуры электроснабжения загородного жилья, в которой преобладают воздушные линии электропередачи и дома часто подключаются к сети с помощью воздушного ввода. Электроснабжение многоэтажных домов в городской черте организовано посредством подземных кабельных линий, поэтому даже при грозовых разрядах ИПН проявляются в гораздо меньшей степени.

Как защититься от ИПН в частном доме

Рассмотрим условия, при которых защита от ИПН в частном доме будет максимально эффективной.

Читайте также  Умный дом защита от протечек воды

Первое. Устройства защиты от импульсных перенапряжений (УЗИП) исправно функционируют только при наличии качественного заземления в доме.

Второе. При воздушном вводе в дом, владелец обязан устанавливать устройство защиты от импульсных перенапряжений (УЗИП).

Третье. УЗИП, устанавливаемое при воздушном вводе, должно быть класса 1 или 1+2 и иметь соответствующую маркировку: Т1 или Т1+Т2. Это означает, что устройство протестировано токами, формой 10/350 мкс, имитирующими прямой удар молнии. Оно устанавливается в щите учета на опоре, перед электросчетчиком.

Если вы хотите защитить домашнюю электросеть только от пробоя изоляции и пожара (базовая защита), одного такого устройства, как правило, будет достаточно.

Четвертое.

Дом с воздушным вводом, и вы хотите кроме базовой защиты обеспечить защиту электронных потребителей (холодильник, стиральная машина, радиоаппаратура и т. п.). Тогда, кроме УЗИП Т1 или Т1+Т2 в щите учета, в распределительном щите в доме устанавливается УЗИП 2 класса, с маркировкой Т2. Такие устройства тестируются формой тока 8/20 мкс и предназначены для защиты от коммутационных помех или как вторая ступень защиты при ударе молнии.

Пятое. Дом с воздушным вводом, и кроме базовой защиты и защиты электронных потребителей, нужно обезопасить особо чувствительное или ценное электронное оборудование (компьютер с важными данными, Hi-End аппаратуру и т. п.). В этом случае, кроме УЗИП в щите учета и в распределительном щите, непосредственно рядом с защищаемым оборудованием устанавливаются УЗИП 3 класса.

Они обычно изготавливаются в виде сетевых фильтров или переходников, подключаемых к розетке.

Шестое. Требуемое количество полюсов УЗИП, устанавливаемых в щитах, определяется следующим образом: число полюсов должно быть на единицу меньше, чем число жил в питающем кабеле.

Седьмое. УЗИП, устанавливаемые в щитах, подключаются через отдельный аппарат защиты от сверхтоков.

Дело в том, что большинство УЗИП выполнены на базе варисторов, и, как любые другие элементы электрических цепей, могут повреждаться при работе в режимах, не предусмотренных техническими характеристиками. Это сопровождается протеканием через УЗИП сверхтока и если его своевременно не отключить, то может возникнуть пожар. Большинство производителей рекомендует для защиты УЗИП использовать модульные автоматические выключатели, однако многолетняя практика показала, что для этих целей лучше подходят более эффективные и надежные предохранители.

Предохранители устанавливаются в модульные держатели-разъединители. Для удобства контроля исправности предохранителей следует выбирать модели с индикатором (бойком) срабатывания, который выдвигается из корпуса при перегорании плавкого элемента.

Параметры предохранителя зависят от типа и характеристик УЗИП. Пример рекомендации производителя по выбору защиты УЗИП приведен в таблице. Номинал аппарата защиты УЗИП не должен превышать номинал вводного аппарата защиты.

Восьмое. Даже правильно выбранное УЗИП будет бесполезно, если не выполнить основные правила монтажа (правило полуметра).

Соблюдение рекомендаций специалистов по организации защиты своего дома от ИПН – спокойствие и безопасность домочадцев.

Источники помех в электрических сетях

Высшие гармоники (кратные) представляют собой синусоидальные напряжения или токи, частота которых отличается от основной частоты в целое число раз.

Гармонические искажения напряжений и токов возникают из-за наличия в сетях элементов или оборудования с нелинейной вольт-амперной характеристикой. Основные источники гармонических помех — преобразовательные и выпрямительные установки, индукционные и дуговые печи, люминесцентные лампы. Из бытового оборудования наиболее сильными источниками гармонических помех являются телевизоры. Определенный уровень гармонических помех может создавать и оборудование энергосистем: вращающиеся машины , трансформаторы. Однако, как правило, эти источники не основные.

Основными источниками некратных гармоник являются: статические преобразователи частоты, циклоконверторы, индукционные двигатели, сварочные машины, дуговые печи, системы управления токами наложенной частоты.

Статические преобразователи частоты состоят из выпрямителя переменного тока исходной частоты в постоянный ток и преобразователя постоянного тока в переменный требуемой частоты. Напряжение постоянного тока модулируется выходной частотой преобразователя, вследствие чего во входном токе возникают некратные гармоники.

Статические преобразователи частоты используются, главным образом, для двигателей с регулируемой скоростью вращения, применение которых быстро развивается. Двигатели мощностью до нескольких десятков киловатт присоединяются непосредственно к низковольтным сетям, более мощные — к сетям среднего напряжения через собственные трансформаторы. Существует несколько схем выполнения статических преобразователей частоты с различными характеристиками. Частоты некратных гармоник зависят от выходной частоты и пульсности преобразователя. Подобные преобразователи используются также для печей, работающих на средних частотах.

Циклоконверторы представляют собой трехфазные преобразователи большой мощности (несколько мегаватт), которые превращают трехфазный ток исходной частоты в трехфазный или однофазный ток пониженной частоты (обычно менее 15 Гц), используемый для питания тихоходных двигателей большой мощности. Они состоят из двух управляемых выпрямителей, проводящих ток попеременно то в одном, то в другом направлении. Циклоконверторы используются в очень редких случаях. Токи интергармоник достигают 8-10% от тока основной частоты. В связи с большой мощностью циклоконверторов они присоединяются к сетям с большой мощностью короткого замыкания, поэтому напряжения интергармоник оказываются малыми. Измерения, проведенные на двух таких установках в Швейцарии, показали, что их величины в сетях 50 и 220 кВ не превышают 0,1% от номинального напряжения.

Индукционные двигатели могут в ряде случаев генерировать интергармоники из-за наличия зазора между статором и ротором, особенно в сочетании с насыщением стали. При нормальной скорости вращения ротора частоты интергармоник находятся в диапазоне 500-2000 Гц, но при запуске двигателя «пробегают» весь диапазон частот вплоть до установившегося значения. Помехи, создаваемые двигателями, могут быть значительными при установке их в конце длинной линии низкого напряжения (более 1 км). В этих случаях были замерены интергармоники величиной до 1%.

Сварочные машины и дуговые сталеплавильные печи генерируют широкий и непрерывный спектр гармоник. частоты гармоник и интергармоник, генерируемых преобразова-тельным оборудованием.

Отклонения напряжения обуславливаются изменением нагрузок потребителей в течение суток и соответствующей работой устройств, регулирующих напряжения (трансформаторы с РПН).

Колебания напряжения представляют собой серию изменений случайного или циклического характера.

Колебания напряжения вызываются работой электроприемников с резко-переменным характером потребления мощности и происходят при работе следующего оборудования: сварочных машин сопротивления и дуговых, прокатных станов, мощных двигателей с изменяющейся нагрузкой, электродуговых сталеплавильных печей. Скачкообразные изменения напряжения могут возникать также при коммутациях нагрузок и электрооборудования (например: конденсаторных батарей).

Кратковременные провалы напряжения

Кратковременные провалы напряжения представляют собой неожиданные снижения напряжения с его восстановлением через интервал времени от нескольких периодов основной частоты до нескольких электрических градусов.

Кратковременные провалы напряжения вызываются коммутационными процессами в энергосистемах, связанных с короткими замыканиями, а также запуском мощных двигателей. Определенное количество таких провалов, вызванных работой автоматики энергосистем по ликвидации коротких замыканий, не может быть устранено и потребители должны учитывать это обстоятельство.

Источниками импульсов напряжения являются коммутационные операции в сетях энергосистем и грозовые явления.

Несимметрия трехфазной системы напряжений

Несимметрия трехфазной системы напряжения возникает, если фазные или междуфазные напряжения не равны по амплитуде или угол сдвига между ними не равен 120 эл. град.

Несимметрия трехфазной системы напряжений может быть вызвана тремя причинами: несимметрией параметров воздушных линий вследствие отсутствия транспозиции проводов или применения удлиненных циклов транспозиции. Этот фактор проявляется преимущественно на линиях высокого напряжения; неравенством нагрузок фаз вследствие неравномерного распределения их между фазами (систематическая несимметрия) либо неодновре-менностью их работы (вероятностная несимметрия); — неполнофазными режимами линий электропередач (после отклю-чения одной из фаз вследствие повреждения).

Степень несимметрии напряжений, вызываемая несимметрией параметров линий электропередач, как правило, невелика (до 1%). Наиболее существенная несимметрия возникает при неполнофазных режимах работы линий электропередач, однако такие режимы бывают весьма редко. Поэтому основной наиболее распространенной причиной несимметрии являются нагрузки сети.

В сетях промышленных предприятий источниками несимметрии могут быть: мощные однофазные нагрузки, индукционные плавильные и нагревательные печи, сварочные агрегаты, печи электрошлакового переплава; трехфазные электроприемники длительно работающие в несимметричном режиме, электродуговые сталеплавильные печи.

Отклонения частоты возникают вследствие несоответствия мощности генераторов вырабатывающих электроэнергию и потребляемой нагрузки. При превышении генераторной мощностью мощности нагрузки скорость генераторов возрастает, пропорционально ей возрастает частота. Мощность, потребляемая нагрузкой, также увеличивается, при определенном значении частоты наступает баланс между генерируемой и потребляемой мощностью. Аналогичная картина снижения частоты наблюдается, если мощность нагрузки превышает мощность генераторов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Алексей Бартош/ автор статьи
Понравилась статья? Поделиться с друзьями:
Gk-Rosenergo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: