Классификация устройств защиты от импульсных перенапряжений

ГОСТ Р МЭК 61643-12-2011 Устройства защиты от импульсных перенапряжений низковольтные. Часть 12. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения / ГОСТ Р от 06 декабря 2011 г. № МЭК 61643-12-2011

Классификация устройств защиты от импульсных перенапряжений

Классификация устройств защиты от импульсных перенапряжений

ГОСТ Р МЭК 61643-12-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УСТРОЙСТВА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ НИЗКОВОЛЬТНЫЕ

Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения

Low-voltage surge protective devices. Part 12. Surge protective devices connected to low-voltage power distribution systems. Selection and application principles

Дата введения 2013-01-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-технический центр «Энергия» (АНО «НТЦ «Энергия», г.Москва и Обществом с ограниченной ответственностью «Всероссийский научно-исследовательский и конструкторско-технологический институт низковольтной аппаратуры» (ООО «ВНИИэлектроаппарат»), г.Ставрополь, на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 331 «Низковольтная аппаратура распределения, защиты и управления»

4 Настоящий стандарт идентичен международному стандарту МЭК 61643-12:2002*, издание 1.0 «Низковольтные устройства для защиты от импульсных перенапряжений. Часть 12. Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения» (IEC 61643-12:2002 «Low-voltage surge protective devices — Part 12: Surge protective devices connected to low-voltage power distribution systems — Selection and application principles».

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Введение

Настоящий стандарт разработан с целью прямого применения в Российской Федерации международного стандарта МЭК 61643-12 «Низковольтные устройства для защиты от импульсных перенапряжений. Часть 12. Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения».

МЭК 61643-12 входит в серию стандарта МЭК 61643.

Требования и информационные материалы, содержащиеся в стандарте, позволяют осуществить ориентировочные расчеты по подбору УЗИП с необходимыми параметрами для защиты общих линий и конкретных электропотребителей в электроустановках зданий и сооружений различного назначения (производственные, жилые и административные здания и сооружения), оптимизировать построение защиты от импульсных перенапряжений грозового характера и возникающих вследствие коммутационных перенапряжений.

Приложения А, В, С, D, E, F, G, H, I, J, K и L носят исключительно информационный характер и позволяют на основе приведенных в них материалов по расчетам параметров возникающих перенапряжений, расчетам необходимых параметров УЗИП, примеров их применения, материалов по подбору необходимой резервной защиты выполнять подбор необходимой защитной аппаратуры объекта энергоснабжения от импульсных перенапряжений.

0.1 Основные положения

Настоящий стандарт предоставляет информацию для оценки, со ссылкой на МЭК 61024-1, МЭК 61662 и МЭК 60364, необходимости в применении УЗИП в низковольтных системах, выбора и координации УЗИП с учетом всех внешних условий, в которых они будут применяться. Примерами этих условий являются: защищаемое оборудование и характеристики систем, уровень изоляции, перенапряжения, способ установки, размещение УЗИП, координация УЗИП, режим отказа УЗИП и последствия отказа оборудования.

Настоящий стандарт также дает руководство для оценки риска, связанного с необходимостью применения УЗИП и определения энергетической стойкости УЗИП. Руководство по требованиям к координации изоляции изделия обеспечивается серией стандартов МЭК 60664.

Требования безопасности (огнестойкость, защита от сверхтоков и защита от электрического удара), требования к монтажу и установке приведены в стандарте МЭК 60364.

Серия стандартов МЭК 60364 предоставляет непосредственную информацию по условиям установки и монтажа УЗИП. Стандарт МЭК/ТО 62066 дает дополнительную информацию по научной основе защиты от импульсных перенапряжений.

0.2 Пояснения к структуре настоящего стандарта

Нижеприведенный перечень характеризует структуру настоящего стандарта и дает краткую справку об информации, содержащейся в каждом разделе и приложении. Главные разделы дают базовую информацию о факторах, учитываемых при выборе УЗИП. Потребители, желающие получить более подробную информацию, чем содержится в разделах 4 и 7, могут обратиться к соответствующим приложениям.

В разделе 1 оговорена область применения настоящего стандарта.

В разделе 2 приведен перечень нормативных ссылок на действующие стандарты.

В разделе 3 даны определения терминов, приводимых в настоящем стандарте.

В разделе 4 приведены параметры систем и соответствующих им УЗИП. К воздействиям грозового характера приравнены воздействия временных перенапряжений и импульсов, возникающих при коммутациях.

В разделе 5 приведен перечень параметров, применяемых для выбора УЗИП, и даны некоторые пояснения относительно этих параметров. Пояснения связаны с данными, приведенными в МЭК 60364.

Раздел 6 является основным в настоящем стандарте. В нем описаны воздействия и связанные с ними (как приведено в разделе 4) характеристики УЗИП (как приведено в разделе 5). На отводящей линии защита, обеспечиваемая УЗИП, может иметь обратное воздействие на установку. На разных этапах подбора УЗИП могут возникнуть проблемы координации при установке в одной линии нескольких УЗИП, применяемых в установке (уточнения по вопросам координации могут быть в приложении F).

В разделе 7 приведен анализ рисков (возникающих, когда применение УЗИП экономически выгодно).

Планируемый к введению раздел 8, в котором будут рассмотрены вопросы координации между вспомогательными и основными силовыми цепями, — в стадии рассмотрения.

Приложение А относится к информации по выбору и пояснениям процедур испытаний, применяемых в МЭК 60364-1.

В приложении В приведены примеры соотношений между двумя важными параметрами УЗИП — и , применяемыми для варисторов на основе окиси цинка, а также примеры соотношений между и связанным номинальным напряжением.

Приложение С дополняет информацию по импульсным помехам в низковольтных сетях, представленную в разделе 4.

Приложение D посвящено расчетам распределения грозового тока между различными заземленными системами.

Приложение Е посвящено расчетам временных перенапряжений, возникающих при авариях в высоковольтных системах.

Приложение F дополняет информацию, приведенную в разделе 6, по координации между несколькими УЗИП, примененными в системе.

В приложении G приведены специфические примеры применения настоящего стандарта.

В приложении Н приведены специфические примеры применения анализа рисков.

Приложение I дополняет информацию, приведенную в разделе 4, касающуюся перенапряжений в системах.

Приложение J дополняет информацию, приведенную в разделе 5, касающуюся выбора УЗИП.

Приложение K дополняет информацию, приведенную в разделе 6, касающуюся применения УЗИП в низковольтных системах.

Приложение L дополняет информацию, приведенную в разделе 7, касающуюся параметров применяемых при анализе рисков.

1 Область применения

Настоящий стандарт описывает принципы выбора, размещения и координации устройств защиты от импульсных перенапряжений (далее — УЗИП), предназначенных для подсоединения к силовым цепям переменного тока частотой 50-60 Гц или постоянного тока и к оборудованию на номинальное напряжение до 1000 В (действующее значение) переменного тока или 1500 В постоянного тока.

Примечание 1 — Для УЗИП специальных назначений, например для электрических тяговых установок и т.п., могут понадобиться дополнительные требования.

Примечание 2 — Следует заметить, что также применяются части МЭК 60364.

Примечание 3 — Настоящий стандарт распространяется только на УЗИП и не касается элементов УЗИП, встроенных в оборудование.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты*. При датированных стандартах должно применяться только то издание, которое указано. При недатированных ссылочных документах следует использовать последнее издание (включая изменения к нему) ссылочного документа.

* Таблицу соответствия национальных стандартов международным см. по ссылке. — Примечание изготовителя базы данных.

МЭК 60038 Стандартные напряжения по МЭК (IEC 60038, IEC standard voltage)

МЭК 60364-4-41 Электрические установки зданий. Часть 4-41. Защита для обеспечения безопасности. Защита от электрического удара (IЕС 60364-4-41, Electrical installations of buildings — Part 4-41: Protection for safety — Protection against electrical shock)

МЭК 60364-4-44 Электрические установки зданий. Часть 4-44. Защита для обеспечения безопасности. Защита от резких отклонений напряжения и электромагнитных возмущений (IEC 60364-4-41, Electrical installations of buildings — Part 4-41: Protection for safety — Protection against voltage disturbances and electromagnetic disturbances)

МЭК 60364-5-53 Электрические установки зданий. Часть 5-53. Выбор и установка электрического оборудования. Изоляция, коммутация и управление (IEC 60364-5-53, Electrical installations of buildings — Part 5-53: Selection and erection of electrical equipment — Isolation, switching and control)

МЭК 60529 Степени защиты, обеспечиваемые корпусами (Код IP) (IEC 60529, Degrees of protection provided by enclosures (IP Code))

МЭК 60664-1 Координация изоляции оборудования в низковольтных системах. Часть 1. Принципы, требования и испытания (IEC 60664-1, Insulation coordination for equipment within low-voltage systems — Part 1: Principles, requirements and tests)

МЭК 61000-4-5 Электромагнитная совместимость. Часть 4-5. Методики испытаний и измерений. Испытание на невосприимчивость к выбросу напряжения (IEC 61000-4-5, Electromagnetic compatibility (EMC) — Part 4: Testing and measurement techniques — Section 5: Surge immunity test)

МЭК 61008-1 Выключатели автоматические, работающие на остаточном токе, без встроенной защиты от сверхтоков бытовые и аналогичного назначения (RCBO’s). Часть 1: Общие правила (IEC 61008-1, Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs). Part 1. General rules)

МЭК 61009 (все части) Выключатели автоматические, работающие на остаточном токе, со встроенной защитой от сверхтоков бытовые и аналогичного назначения (RCBO’s) (IEC 61009 (all parts), Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs))

МЭК 61024-1 Защита зданий от удара молнии. Часть 1. Основные принципы (IEC 61024-1, Protection of structures against lightning — Part 1: General principles)

МЭК 60312-1 Защита от наведенного электромагнитного импульса, вызванного молнией. Часть 1. Основные принципы (IEC 60312-1, Protection against lightning electromagnetic impulse — Part 1: General principles)

МЭК/ТО 60312-4 Защита от наведенного электромагнитного импульса, вызванного молнией. Часть 4. Защита оборудования в существующих зданиях (IEC/TS 60312-1, Protection against lightning electromagnetic impulse — Part 4: Protection of equipment in existing structures)

МЭК 61643-1 Устройства защиты от перенапряжений низковольтные. Часть 1. Устройства защиты от перенапряжений, подсоединенные к низковольтным системам распределения электроэнергии. Требования и испытания (IEC 61643-1, Surge protective devices connected to low-voltage power distribution systems — Part 1: Performance, requirements and testing methods)

МЭК/ПИ 61662 Оценка риска повреждений от удара молнии (IEC/TR 61662, Assessment of the risk of damage due to lightning)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

устройство защиты от импульсных перенапряжений (УЗИП) (surge protective device) (SPD): Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсов тока. Это устройство содержит по крайней мере один нелинейный элемент.

УЗИП — устройство защиты от импульсных перенапряжений

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Читайте также  Огнезащита металлических конструкций составы

[Реклама] Купить УЗИП высокой надежности и качества вы можете на сайте etirussia.ru

Внешний вид УЗИП:

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

    Схема подключения УЗИП

    Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

    Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

    Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

    Принципиальные схемы подключения УЗИП выглядят следующим образом:

    При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Что такое ограничители импульсных перенапряжений

    В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.

    Принцип работы

    В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.

    Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.

    Конструкция

    Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.

    В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.

    • Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
    • Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.

    На изображении цифрами обозначены следующие конструктивные элементы:

    • 1 — корпус;
    • 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
    • 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
    • 4 — индикатор, показывающий текущий ресурс работы устройства;
    • 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.

    Технические характеристики

    Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.

    • Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
    • Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
    • При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
    • Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
    • Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.

    Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:

    • от замыканий на высокой стороне низковольтных сетей;
    • от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
    • от возможных перенапряжений, вызванных электромагнитными факторами.

    В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.

    • Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
    • Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.

    Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.

    Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.

    • Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
    • Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
    • Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.

    Что означает аббревиатура УЗИП

    УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).

    Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.

    Как подключить УЗИПы в домашних условиях

    Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН 1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.

    Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.

    На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.

    • фаза — обозначена черным проводом;
    • нулевой — обозначен синим проводом;
    • зеленый — защитный заземляющий провод.

    На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.

    • черный провод — первая из трех фаз;
    • красный провод — вторая из трех фаз;
    • коричневый — третья фаза;
    • синий — нулевой заземляющий провод;
    • зеленый — защитный провод заземления.

    Рекомендации по монтажу

    Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.

    • Важно иметь очень надежное заземление. Защита с ненадежным контуром заземления даже при не очень большом скачке импульса напряжения приведет к аварийной ситуации в виде сгоревших электроприборов и самого щитка.
    • Необходимо соблюдать соответствие класса защищенности УЗИП с местом установки щитка. Если щиток находится на улице, а устройство предназначено для работы в помещении то в лучшем случае оно выйдет из строя, в худшем нанесет вред домашней электросети.
    • Для обеспечение надежной защиты в некоторых случаях требуется установка УЗИП разных классов защищенности.
    • Не всякое защитное устройство подходит к конкретному виду заземления домашней электросети. Следует внимательно изучить техническую документацию приобретаемого устройства, чтобы не выбрасывать на ветер деньги на достаточно дорогое устройство.
    • Важно правильно подключить схему, без нарушений. В случае отсутствия навыков электрика не стоит браться за работу. Квалифицированный специалист выполнит ее правильно, без особых затруднений.

    Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.

    Видео по теме

    Как защитить дом от импульсных перенапряжений

    В техподдержке интернет-магазина «АСберг АС» клиенты часто задают вопросы о том как защитить дом от перепадов напряжения, что такое устройства защиты от перенапряжения, какие они бывают и как их подбирать. Класс продукции УЗИП известен покупателям значительно меньше чем автоматические выключатели или УЗО и игнорирование защиты от перенапряжения часто служит причиной пожаров и выхода из строя дорогостоящего электронного оборудования в частных домах. Хотелось бы восполнить этот пробел в знаниях покупателей и рассказать более подробно о том, что такое УЗИП, для чего он нужен и как его подобрать.

    УЗИП: особенности выбора и применения

    Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

    Что такое УЗИП и для чего оно нужно?

    Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

    Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

    УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

    Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

    Тип устройства Для чего предназначено Где применяется
    I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта.
    Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.
    Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ).
    Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
    II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты.
    Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.
    Монтируются и подключаются к сети в распределительных щитах.
    Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
    III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью.
    Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.
    Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются.
    Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

    Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

    Как работает УЗИП?

    УЗИП устраняет перенапряжения:

    • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
    • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

    В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

    Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

    Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S.
    В системе заземления TN-C применяется трехполюсное УЗИП.
    В нем нет контакта для подключения нулевого проводника

    В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

    УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

    В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

    УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

    Как выбрать УЗИП?

    При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

    Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

    При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

    При каскадной защите требуется минимальный интервал 10 м между устройствами защиты

    Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

    Оценка значимости защищаемого оборудования

    Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

    Группа Что включает Где определяется
    Первая Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей МЭК 62305-3
    Вторая Меры защиты для минимизации отказов электрических и электронных систем МЭК 62305-4
    Третья Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии) МЭК 62305-5

    Оценка риска воздействия на объект

    Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (электроустановки зданий):

    • МЭК 60364-4-443 (защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).
    • МЭК 60364-4-443-4 (выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.

    Выбор оборудования по МЭК 6036

    В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

    Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ. Это тот уровень, который должна выдерживать техника.
    Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

    Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети

    Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

    Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания Выбор защитной аппаратуры: бытовая техника и электроника Выбор защитной аппаратуры: производственное оборудование Выбор защитной аппаратуры: ответственное оборудование

    Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

    Источник: Компания «АСберг АС»

    УЗИП — что это такое, описание и схемы подключения в частном доме

    Перенапряжение — это превышение максимального показателя напряжения для той или иной сети. Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды. Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов. Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

    Что такое УЗИП и для чего оно нужно?

    УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

    УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

    УЗИП бывает двух типов:

    • ОПС — ограничитель перенапряжений сети;
    • ОИН — ограничитель импульсных напряжений.

    Принцип действия и устройство

    Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

    УЗИП имеет два вида защиты:

    • Несимметричный (синфазный) — при перенапряжении устройство направляет импульсы на землю (фаза — земля и нейтраль – земля);
    • Симметричный (дифференциальный) — при перенапряжении энергия направляется на другой активный проводник (фаза — фаза или фаза – нейтраль).

    Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

    Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

    Разновидности УЗИП

    Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

    • Коммутирующие;
    • Ограничивающие;
    • Комбинированные.

    Коммутирующие защитные аппараты

    Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

    Ограничители сетевого перенапряжения (ОПН)

    Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

    Комбинированные УЗИП

    УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

    Классы УЗИП

    Существует всего три класса устройств по степени защиты:

    • Устройство I класса (категория перенапряжения IV) — защищает систему от прямых ударов молнии, и устанавливается в главном распределительном щите или в вводно-распределительном устройстве (ВРУ). Обязательно нужно использовать данное устройство, если здание находится на открытой местности и окружено множеством высоких деревьев, что увеличивает риск грозового воздействия.
    • Устройство II класса (категория перенапряжения III) — используется как дополнение к устройству I класса для защиты сети от коммутационного воздействия, т.е. от внутреннего перенапряжения сети. Устанавливается в распределительном щите.
    • Устройство III класса (категория перенапряжения II) — применяется для защиты от остаточных атмосферных и коммутационных перенапряжений, а также для устранения высокочастотных помех прошедших через устройство II класса. Проводится монтаж как в обычные розетки или разветвительные коробки, так и в сами электроприборы, которые необходимо обезопасить.

    Классификация по степени разряда тока:

    • Класс В — разрядки воздушные или же газовые с током разряда от 45 до 60 кА. Устанавливаются на вводе в здание в главном щите или в вводно-распределительном устройстве.
    • Класс С — варисторные модули с токами разряда порядка 40 кА. Устанавливаются в дополнительных щитах.
    • Классы С и D применяются в тандеме в случае, если необходим подземный кабельный ввод.

    ВАЖНО! Расстояние между УЗИП должно быть не меньше 10 метров по длине проводки.

    Как выбрать УЗИП?

    Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

    Система заземления бывает трех типов:

    • TN-S с одной фазой;
    • TN-S с тремя фазами;
    • TN-C или TN-C-S с тремя фазами.

    Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

    При выборе УЗИП также необходимо учесть следующие факторы:

    • Значимость защищаемого оборудования;
    • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

    В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

    Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

    Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

    При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

    Как подключить УЗИП в частном доме?

    Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

    Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

    Схема подключения в однофазной сети системы заземления TN-S

    При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

    Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

    СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

    Схема подключения в трехфазной сети системы заземления TN-S

    Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

    Схема подключения в трехфазной сети системы заземления TN-C

    В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

    Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

    Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

    Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

    Ошибки при подключении

    1. Установка УЗИП в электрощитовую с плохим контуром заземления.

    При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

    2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

    Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

    3. Использование УЗИП не того класса.

    Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

    4. Установка УЗИП только одного класса.

    Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

    5. Перепутан класс устройства и место его назначения.

    Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

    Что такое УЗИП

    Подписка на рассылку

    • ВКонтакте
    • Facebook
    • ok
    • Twitter
    • YouTube
    • Instagram
    • Яндекс.Дзен
    • TikTok

    В результате разрядов атмосферного электричества или включения энергопотребителей большой мощности в электрических сетях наблюдается резкое скачкообразное повышение разницы потенциалов (перенапряжение), длящееся доли секунды, но способное принести непоправимый ущерб не только самой сети, но и подключенным к ней приборам. Избежать серьезных последствий от таких скачков поможет УЗИП – устройство защиты от импульсных перенапряжений.

    Принцип действия УЗИП

    Основным чувствительным элементом УЗИП является особый полупроводниковый модуль (варистор), сопротивление которого резко уменьшается, если напряжение, которое протекает через него, превышает номинальные установленные значения.

    Принцип работы УЗИП для частного дома можно рассмотреть на примере лампы, включенной в однофазную электрическую цепь.

    Следует помнить, что один полюс УЗИП подключается к фазному проводнику после автоматического выключателя, а второй полюс к контуру заземления.

    Если напряжение в сети не превышает верхнюю границу допустимых колебаний, установленных ГОСТ 29322-92, варистор защитного устройства имеет высокое сопротивление и поэтому электрический ток беспрепятственно поступает к нагрузке, минуя УЗИП.

    Когда, по какой-либо причине, напряжение в сети резко возрастает, сопротивление полупроводникового элемента УЗИП мгновенно падает до минимальных значений. В результате этого ток начинает поступать через защитное устройство на контур заземления, создавая искусственное короткое замыкание, провоцирующее срабатывание автоматического выключателя и обесточивание сети. После того, как напряжение снизится до допустимых пределов, сопротивление варистора возрастет и цепь продолжит работу в обычном режиме.

    УЗИП: классы

    Такие устройства, в зависимости от конструкции и целевой защиты, подразделяются на три класса.

    • УЗИП I класса является действенной защитой от перенапряжений, причиной которых является разряд молнии. Устройства этого класса устанавливаются на вводах питающего напряжения в энергоемкие производственные цеха, крупные административно-бытовые здания, торговые и развлекательные комплексы и пр.
    • УЗИП II касса предохраняют бытовую технику и электрическую проводку от импульсов перенапряжения, возникающих из-за включения или отключения оборудования большой мощности. Устройство УЗИП II класса монтируются в распределительные щиты, установленные в подъездах многоквартирных домов.
    • УЗИП III класса наиболее чувствительны и реагируют на мгновенные скачки напряжения, причиной которого является короткое замыкание в сети. Такие устройства необходимы для защиты высокоточного и дорогостоящего электронного оборудования, в том числе медицинского.

    На некоторых моделях УЗИП может стоять другая маркировка, например ОПС (ограничитель перенапряжений сети) или ОИН (ограничитель импульсных напряжений). Однако какое бы название не имело такое устройство, задача у него одна – защита от импульсных перенапряжений.

    Базовые характеристики УЗИП

    Выбор УЗИП для дома или для защиты промышленной сети должен основываться на базовых характеристиках устройства. Для удобства и облегчения подбора устройства защиты от импульсных перенапряжений они типографским способом наносятся на его корпус:

    • номинальное и предельное напряжение питающей сети – напряжение, на которое рассчитано устройство;
    • номинальный и максимальный ток разряда – импульс тока, который даже при многократном прохождении через устройство не приведет к его выходу из строя;
    • уровень напряжения защиты – предельная величина напряжения, при котором устройство не срабатывает;
    • класс испытаний;
    • индикатор состояния варистора – зеленый (рабочий), а красный (устройство вышло из строя).

    Цветовая индикация состояния варистора позволяет заметить, что он находится в нерабочем состоянии, и вовремя заменить его на новый.

Алексей Бартош/ автор статьи
Понравилась статья? Поделиться с друзьями:
Gk-Rosenergo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: