Молниезащита и заземление нормы
Какие документы регламентируют устройство молниезащиты для зданий и сооружений
Порядок обустройства грозовых отводов (молниезащиты) на объектах промышленного и гражданского назначения регулируется целым рядом нормативных актов и стандартов, начиная с ПУЭ и кончая отдельными ведомственными инструкциями. Все эти документы содержат требования к молниезащите в части, касающейся проектирования (расчёта), монтажа, ввода в эксплуатацию и обслуживания этих систем.
Части конструкции
Для более точного понимания сути требований следует принять во внимание, что типовая конструкция молниезащиты состоит из следующих основных частей:
молниеприёмника, монтируемого в самой верхней точке объекта;
- специального ленточного токоотвода, используемого в качестве соединителя приёмника разряда с устройством заземления (ЗУ);
- самого заземлителя, обеспечивающего сток разрядного тока в землю.
Таким образом, каждый из составных элементов молниезащиты выполняет свою, вполне определённую функцию, удовлетворяющую требованиям действующих нормативов, в частности ПУЭ.
Нормативная база
К перечню стандартов и регламентирующих документов, которые определяют ключевые моменты по обустройству молниезащиты, следует отнести:
ПУЭ (редакция №7) «Молниезащита зданий и сооружений»;
- инструкция РД 34.21.122-87 (Госэнергонадзор);
- инструкция Минэнерго под номером СО 153-34.21.122-2003;
- СНиП 3.05.06-85;
- ряд ГОСТов и стандартов, касающихся порядка обустройства молниеприёмников и заземлений.
Пунктами 4.2.133-4.2.142 ПУЭ определяются общие принципы организации молниезащиты электроустановок и возникших в результате этого перенапряжений.
Требования этих пунктов распространяются на РУ (распределительные устройства) и ТП (трансформаторные подстанции) открытого и закрытого типа, работающие в цепях энергоснабжения, а также на другое распределительное и станционное электрооборудование.
Инструкция РД 34.21.122-87 распространяет своё действие на порядок организации молниезащиты на проектируемых гражданских и промышленных объектах с учётом их основного функционального назначения.
Помимо этого, она относит каждое из этих строений к определённой категории, присваиваемой в зависимости от опасности попадания в них грозового разряда.
Ещё одна инструкция (под наименованием СО 153-34.21.122-2003) касается всех видов зданий и сооружений, включая и промышленные коммуникационные системы. Она определяет порядок учёта документации по молниезащите при разработке проекта, строительстве, эксплуатации и реконструкции всех указанных объектов.
И, наконец, требования ГОСТ (включая действующие в строительстве нормативы и правила) распространяются на порядок обустройства отдельных элементов систем молниезащиты. Рассмотрим каждый из перечисленных выше документов более подробно.
ПУЭ (седьмая редакция)
Отдельными пунктами ПУЭ оговаривается, что РУ и ТП 20-750 кВ открытого типа оборудуются молниеприёмниками в обязательном порядке. Для некоторых видов сооружений допускается отсутствие специальной молниезащиты, но лишь при условии ограниченной продолжительности гроз в течение года (не более 20 часов).
Те же сооружения закрытого типа требуют защиты от молнии лишь в районах с показателем продолжительности гроз более 20.
Заземление
В том случае, когда здания закрытого типа имеют металлическую кровлю – молниезащита осуществляется с помощью заземляющих устройств, подсоединённых непосредственно к покрытию. Если кровельное перекрытие изготовлено из железобетонных плит, то при наличии хорошего контакта между отдельными элементами строения допускается заземление через входящую в их состав арматуру.
Защита зданий РУ и ТП в закрытом исполнении выполняется либо с помощью молниеотводов стержневого типа, либо путём укладки специальной металлической сетки.
Применение этих защитных конструкций считается обоснованным лишь в тех случаях, когда грозозащита оборудуется на железобетонной крыше зданий, плиты которой не имеют электрической связи с землёй.
Стержневая и сеточная защита
При установке на защищаемом строении типовых стержневых молниеприёмников, от каждого из них в сторону заземлителя прокладывается не менее 2-х токоотводов, расположенных по разным сторонам здания.
Особой конструкции молниеприемная сетка, укладываемая поверх кровли на специальных держателях, изготавливается из стальной проволоки диаметром 6-8 миллиметров.
При скрытом монтаже согласно ПУЭ такой молниеотвод кладётся под кровельное покрытие (на слой утеплительного или гидроизоляционного материала с негорючими свойствами).
Выполненная в виде сетки защитная конструкция должна состоять из ячеек площадью не более 12х12 метров, а её узлы рекомендуется фиксировать посредством сварки.
Токоотводы или спуски, используемые для соединения молниеприёмной сетки с ЗУ, должны устраиваться по периметру здания через каждые 25 метров (не реже).
Входящий в состав молниезащиты заземлитель должен обеспечивать беспрепятственное стекание тока разряда в почву, что достигается за счёт его низкого переходного сопротивления и хорошего контакта с грунтом.
Инструкция РД 34.21.122-87
В соответствии с положениями данного документа при проектировании зданий и сооружений хозяйственного и бытового назначения должны соблюдаться требования по их оборудованию специальной молниезащитой. Определяемые этой инструкцией нормы не распространяются на линии электропередач, РУ и ТП, а также на контактные сети и коммуникационное оборудование.
Этим документом устанавливается порядок обустройства систем молниезащиты на возводимых объектах с учётом их размещения снаружи и внутри зданий.
Кроме того, им определяется перечень защитных мер, принимаемых в случае реконструкции строения или установки на его открытых пространствах (на кровле, в частности) дополнительного электрооборудования.
Помимо требований этой инструкции при проектировании сооружений того или иного назначения должны учитываться действующие положения и правила, устанавливаемые государственными стандартами и строительными нормативами.
Согласно прописанным в РД 34.21.122-87 правилам, все подлежащие молниезащите объекты в соответствии с особенностями их конструкции и географического положения делятся на 3 категории. С таблицей, в которой сведены воедино различные виды подлежащих защите объектов, их местоположение, а также присваиваемая им в зависимости от этого категория, можно ознакомиться в Приложении.
Нормативы и стандарты в области молниезащиты
Необходимость обустройства качественных систем молниезащиты жилых и промышленных зданий особенно остро возникла в начале прошлого столетия во времена всеобщей индустриализации и электрификации, актуальна она и в настоящее время. Сегодня ежедневно на планете Земля наблюдается около 44-45 тысяч гроз, которые могут привести к выходу электроприборов из строя, повреждению целостности зданий и построек, пожарам и гибели людей.
Для создания работоспособных, эффективных и оптимальных для каждого объекта систем разработаны общепризнанные нормативы проектирования и организации молниезащиты. Существуют международные и отечественные стандарты и правила. Кроме того, в России различают отраслевые и корпоративные стандарты (например, Газпрома, МОЭК и т.п.). В основу всех норм, регламентирующих проектирование молниезащиты, положен многолетний опыт человечества по организации электробезопасности жилых домов и промышленных предприятий, а также особенности современных построек.
Российские нормативы в области молниезащиты
Создание отечественной нормативной базы по проектированию комплекса мер для обеспечения молниезащиты берет начало в 30-х годах минувшего века. Первоначально были разработаны требования и правила для производственных зданий и сооружений, а также линий электропередач. В 50-х годах прошлого столетия эти требования начали использоваться для частных домов. Позже с учетом многолетних наблюдений и исследований электромагнитной обстановки во время удара молнии на территории бывших союзных республик Министерство энергетики СССР ввело Инструкцию по обустройству молниезащиты зданий и сооружений РД 34.21.122-87. Эта инструкция, как наследие, действует до сих пор. Однако она давно устарела, поэтому для создания современных систем громоотводов пользуются международными стандартами, установленными Международной электротехнической комиссией (МЭК) и российскими инструкциями более поздних редакций.
В России специалисты и сейчас для создания ряда мер молниезащиты ориентируются на требования и нормы, изложенные в советской инструкции РД 34.21.122-87 (скачать в pdf>>). Данный норматив является первичным документом, на который опираются профессионалы при выборе схемы конструкции громоотводов на этапе проектирования зданий и сооружений. Она дает толкование всех важных терминов и понятий, описывает требования к органзации защиты от молний и к конструкциям громоотводов, а также расчет молниеотводов. Именно она классифицирует здания и позволяет определить необходимый уровень защиты. К недостатком РД 34.21.122-87относят отсутствие описаний нормативов по организации молниезащиты для склада взрывчатых веществ и пороха, а также в ней нет рекомендаций по выбору материалов для заземлений и т.д. Дополнить и обновить положения советского документа попытались в «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО-153-34.21.122-2003 (скачать в pdf>>). Она включает нормы грозозащиты в коммуникациях.
Седьмая редакция ПУЭ (Правила устройства электроустановок 7-е издание, Главы 2.4, 2.5, 4.2) разработана с учетом всех видов и типов электрического оснащения и агрегатов. В этом издании собраны все базовые требования электробезопасности и заземления, используемые при обустройстве защиты от удара молнией промышленных и бытовых объектов. Подвести российские стандарты к мировым требованиям IEC в декабре 2011 года позволили первая и вторая часть ГОСТа Р МЭК 62305-1-2010 «Защита от молнии», а также ГОСТ Р 50571-4-44-2011 «2011 Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от скачков напряжения и электромагнитных помех» (действует с 01.07.2012). Этот документ регламентирует основные нормы по организации безопасности низковольтных установок при появлении отклонений напряжения и электромагнитных помех. Этот стандарт не действует на системы распределения электричества населению, на промышленные объекты и на системы для генерирования и выдачи электроэнергии для них.
Требования к механизмам защиты электрических сетей и электрооборудования при прямом или косвенном влиянии грозовых или иных переходных перегрузок для коммутации к силовым цепям переменного тока (частотой 50 — 60 Гц), постоянного тока и к оснащению с номинальным напряжением до 1000 В (действующее значение) или 1500 В постоянного тока подробно изложены в ГОСТе Р 51992-2011 (МЭК 61643-1-2005) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний» (с 01.07.2012).
Принципы подбора, монтирования и координации устройств грозозащиты от импульсных перенапряжений, предназначенных для подсоединения к силовым цепям переменного тока (частотой 50-60 Гц) или постоянного тока и к оборудованию на номинальное напряжение до 1000 В (действующее значение) переменного тока или 1500 В постоянного тока описаны в ГОСТ Р МЭК 61643-12-2011 «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и использования» (с 01.01.2013).
Все основные требования при прямом или косвенном воздействии грозовых или прочих переходных перенапряжений к устройствам для защиты телекоммуникационных и сигнализационных сетей с обозначенными напряжениями системы до 1000 В переменного тока и 1500 В постоянного тока регламентируются ГОСТом Р 54986-2012 (МЭК 61643-21: 2009) «Устройства защиты от импульсных перенапряжений низковольтные. Часть 21. УЗИП для систем телекоммуникации и сигнализации (информационных систем). Требования к работоспособности и методы испытаний» (с 01.07.2013).
Группа стандартов МЭК (IEC) и их связь
Развитие науки и электротехники не стоит на месте. Наиболее полно, детально и качественно современные мероприятия по грозозащите отображены во всемирных нормативах МЭК «Защита от воздействия молнии МЭК 62305:2010».
Стандарт «Защита от воздействия молнии МЭК 62305:2010» определяет базовые правила защиты от порчи молнией любых построек, живущих в них животных и людей, разных инженерных коммуникаций и систем и иных конструкций относящихся к ним, кроме железнодорожной системы, автотранспорта, воздушных и водных транспортных средств, подземных трубопроводов повышенного давления и т.п.
Нормативы МЭК включают стандарт, определяющий общие положения и описывающий потенциально возможные последствия и опасность молний 62305-1. Потребность организации защиты определяется в соответствии с системой расчета риска и с учетом материального эффекта от установки мер защиты от ударов молнии описывает стандарт 62305-2. Третья часть МЭК 62305:2010 посвящена описанию мер безопасности, требуемых для снижения показателей аварий в постройках и сведения к минимуму уровня опасности для жизни и здоровья людей, находящихся внутри. В четвертой части данного стандарта описан комплекс мер для понижения числа отказов электросистем, приборов и устройств внутри зданий.
Взаимосвязь группы правил МЭК 62305:2010 определяется уровнем опасности поражения молнией объекта и риском возникновения возможных повреждений. При повышенном риске прямого попадания молнии и необходимости обустройства внешней защиты от прямых ее ударов в строения пользуются требованиями стандарта 62305-3:2010. При повышенной опасности поражения электрооборудования и порчи электросетей от вторичного воздействия молнии актуален стандарт 62305-4:2010.
Сравнение отечественных стандартов и МЭК
Современные специалисты, занимающиеся вопросами проектировки и создания молниезащиты современных построек любого назначения, отмечают, что требования МЭК гораздо строже в сравнении с инструкцией советских времен и даже более поздними российскими изданиями ГОСТов. Как правило, если российские Инструкции не дают полный объем необходимой информации для правильного и эффективного создания защиты от молний, профессионалы используют признанные в мире стандарты МЭК.
Наиболее ярким отличием, например инструкции РД 34.21.122-87 от норм IEC при создании внешней защиты является, отсутствие подробного описания организации молниеприемной сети для сложных рельефных крыш, а также отсутствие рекомендаций по рекомендуемым к использованию материалов для заземлений и т.д. При обустройстве внутренней системы защиты стандарты МЭК детально описывают применение разрядников без искровых промежутков для предотвращения пожаров, выхода из строя бытовой техники, промышленного оборудования и внутренних сетей.
Более подробно о сравнении стандартов IEC и DIN и отчественных нормативов читайте в статье «Анализ нормативно-технического обеспечения молниезащиты».
Интересные материалы по этой теме:
Нормативные требования к молниезащите
Еще раз коротко самое главное о стандартизации.
Состав системы молниезащиты по стандартам IEC (МЭК)
Кратко о том, что входит в состав комплекса мероприятий по защите от молний и гроз по мнению Международной электротехнической комиссии, а также взаимосвязанные решения в области внешней и внутренней молниезащиты.
Требования к элементам внешней молниезащиты
Какие испытания проходят элементы молниеприемные системы, соединительные компоненты, проводники, заземляющие электроды? Описание методик проверки, имитирующих воздействие естественных атмосферных условий и воздействие коррозии на компоненты.
Молниезащита и заземление нормы
СТАНДАРТ НП СРО «СОЮЗ СТРОЙИНДУСТРИИ СВЕРДЛОВСКОЙ ОБЛАСТИ»
МОЛНИЕЗАЩИТА ЗДАНИЙ, СООРУЖЕНИЙ, ОТКРЫТЫХ ПЛОЩАДОК И ПРОМЫШЛЕННЫХ КОММУНИКАЦИЙ СИСТЕМАМИ С УПРЕЖДАЮЩЕЙ СТРИМЕРНОЙ ЭМИССИЕЙ. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ, ПРОЕКТИРОВАНИЕ, ТЕХНОЛОГИЯ УСТРОЙСТВА И ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ
Дата введения 2011-01-15
Настоящий Стандарт организации (СТО) разработан в соответствии с целями и принципами стандартизации в Российской Федерации, установленными Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании» в редакции Федерального закона от 01 мая 2007 г. N 65-ФЗ «О внесении изменений в Федеральный закон «О техническом регулировании», а также правилами применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004* «Стандартизация в Российской Федерации. Основные положения» и ГОСТ Р 1.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения», Федеральным законом от 22 июля 2008 г. N 148-ФЗ «О внесении изменений в Градостроительный кодекс Российской Федерации и отдельные законодательные акты Российской Федерации».
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 1.0-2012. — Примечание изготовителя базы данных.
Сведения о Стандарте
1. РАЗРАБОТАН Уральским государственным лесотехническим университетом (г.Екатеринбург), ООО «Компания «КровТрейд» (к.т.н., доцент В.В.Побединский), ООО ТД «Электроизделия» (А.В.Алимов), Управлением Государственного Строительного надзора по Свердловской области (гл.специалист отдела пожарного надзора С.К.Гигин). Под общей редакцией Побединского В.В.
2. ВНЕСЕН НП СРО «Союз стройиндустрии Свердловской области».
3. УТВЕРЖДЕН решением общего собрания НП СРО «Союз стройиндустрии Свердловской области», протокол N 9 от 17 декабря 2010 г.
4. ВВЕДЕН В ДЕЙСТВИЕ Приказом директора N 6 от 22 декабря 2010 г.
5. СОГЛАСОВАН «УралНИИпроект РААСН», ОАО «Уралгражданпроект», Уральское управление Федеральной службы по экологическому, технологическому и атомному надзору, Координационный Совет по саморегулированию регионов УРФО.
Введение
Настоящий Стандарт содержит две части — технические требования и правила по применению и эксплуатации. Таким образом, требования, подлежащие обязательному соблюдению при проектировании и устройстве молниезащиты, а также требования пожарной безопасности изложены в разделе технических требований. В разделе правил приведены методы проектирования и реализации обязательных требований для устройства молниезащиты системами активного типа.
Основным отличием настоящих норм является максимально возможное сокращение описательных требований к средствам и способам молниезащиты зданий, при этом в документе конкретизировано подразделение норм на рекомендуемые и обязательные, определены требования к молниезащите активного типа и основным конструкционным элементам. С учетом европейских стандартов в настоящих нормах повышены требования к коррозионной защите элементов конструкции, а также внутренней молниезащите, что обеспечивает более высокий уровень безопасности объектов и надежности систем.
Оснащение системами молниезащиты различных объектов является обязательной процедурой при строительстве, которая по основным пунктам регламентирована ПУЭ (Правилами устройства электроустановок) и стандартами. В ходе развития систем молниезащиты появляются новые, более эффективные технологии и оборудование. В мировой науке разработаны методы и средства нового поколения защиты от последствий атмосферных разрядов, показавшие на практике высокую эффективность. Одним из таких направлений является использование систем молниезащиты с упреждающей стримерной эмиссией или активной молниезащиты, которые обеспечены соответствующей нормативной базой (стандарты IEC 61024*, IEC 62305*, IEC 61312*) Международной электротехнической комиссии (МЭК) и применяются во всем мире более 30 лет.
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.
Опыт использования систем активной молниезащиты появился за последние годы в российской строительной отрасли. Преимущества их очевидны, но отсутствие соответствующей нормативной базы долгое время не позволяло реализовать возможности более прогрессивной технологии защиты. Но повышение этажности застройки, ответственности объектов, увеличение оснащенности практически всех зданий компьютерными, информационными системами, микропроцессорными средствами управления, чувствительными к импульсным перенапряжениям и помехам в электрических сетях, сделали задачу совершенствования молниезащиты чрезвычайно актуальной.
В целом применение активной системы не противоречит общепринятой, так как теоретические основы защиты зданий и промышленных коммуникаций остаются неизменными. Различие заключается в конструкции молниеприемника, которая делает систему значительно эффективнее, надежнее, менее трудоемкой при монтаже и эксплуатации.
Надёжная работа системы молниезащиты зависит от правильного проектирования, объективного назначения проектных решений, строгого соблюдения технологии устройства, применения качественных материалов и комплектующих, а также соблюдения режимов ТОиР конструкции. С этой целью в настоящих нормах и разработан раздел правил, в котором изложены методические рекомендации по проектированию, устройству и эксплуатации систем активной молниезащиты.
1 Область применения
1.1 Настоящие нормы разработаны с учётом стандартов, действующих в Российской Федерации, и устанавливают требования к системам молниезащиты с упреждающей стримерной эмиссией (активной молниезащиты), рекомендованные для всех организаций, осуществляющих деятельность на территории Свердловской области, независимо от форм собственности и государственной принадлежности.
1.2 Настоящий Стандарт разработан на основе стандартов Европейского союза, рекомендаций Международной электротехнической комиссии и гармонизированы с ними по основным положениям.
1.3 Нормы действуют в районах строительства Свердловской области для зданий, сооружений различного назначения, открытых площадок и промышленных коммуникаций.
1.4 Разработанные в развитие раздела технических требований правила (разделы 4, 5, 6) распространяются на проектирование и устройство молниезащиты системами с упреждающей стримерной эмиссией для зданий, сооружений, открытых площадок и промышленных коммуникаций.
1.5 В разделе правил изложены рекомендации по проектированию и конструктивным решениям устройств молниезащиты, рассмотрены основные узлы и опробованные на практике средства и способы устройства конструкций молниезащиты системами с упреждающей стримерной эмиссией, а также способы технической эксплуатации, выполнение которых обеспечивает соблюдение обязательных технических требований.
1.6 При проектировании и устройстве молниезащиты, кроме положений настоящих Территориальных градостроительных норм, должны выполняться требования действующих норм проектирования, правил по охране труда и пожарной безопасности.
2 Нормативные ссылки
В настоящем Стандарте приведены ссылки на следующие стандарты и нормативные документы:
СО 153-34.21.122-2003. Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций
РД 34.21.122-87. Инструкция по устройству молниезащиты зданий и сооружений
NF C 17-102. Protection des structures et des zones ouvertes contre la foudre par paratonnerre a’ dispositif d’amorcage. (Молниезащита системами с упреждающей стримерной эмиссией).
NF C 17-100. Protection contre la foudre, Installations de paratonnerres. (Молниезащита зданий, сооружений и открытых площадок)
CEI 61643-11 (IEC 61643-11 Ed.1.0): Surge Protective Devices connected to Low-Voltage Power Distribution Systems — Part 11: Performance Requirements and Testing Methods
NF EN 61643-11/A11. Parafoudres basse-tension Partie 11: parafoudres aux systemes de distribution basse tension — Prescriptions et essais
DIN V VDE V 0185. Стандарт Германии. Молниезащита.
Vds 2010. Директива союза немецких страховых обществ (GDV). Молниезащита и защита от перенапряжений с повышенным фактором риска.
PN-IEC-61024. Польский стандарт. Молниезащита зданий, сооружений и промышленных коммуникаций.
3 Термины и определения
В настоящих нормах применены основные понятия, термины и определения в соответствии с приложением А.
4 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
4.1 Общие требования
4.1.1 При проектировании и устройстве молниезащиты системами с упреждающей стримерной эмиссией, кроме настоящих норм следует руководствоваться требованиями СО 153-34.21.122, РД 34.21.122, а также действующими в строительстве другими нормативными документами, нормами пожарной безопасности и требованиями охраны труда.
4.1.2 Категория молниезащиты объекта определяется на основании оценки факторов риска и степени опасности удара молнии для самого объекта и объектов, расположенных в непосредственной близости.
4.1.3 По уровню молниезащиты объекты классифицируются на четыре категории эффективности:
I — эффективность 99%;
II — эффективность 97%;
III — эффективность 91%;
IV — эффективность 84%.
4.1.4 Категория молниезащиты объекта принимается в соответствии с требованиями РД 34.21.122 или СО 153-34.21.122.
4.1.5 Все элементы конструкций, находящихся на крыше здания (антенны, мачты и.т.п.) должны быть расположены внутри защищаемого пространства.
4.2 Требования к конструкциям
4.2.1 Молниеприемник с упреждающей стримерной эмиссией должен быть закреплен наверху металлической мачты таким образом, чтобы его верхняя точка была не менее чем на 2 м выше поверхности или наиболее высокой точки объекта, включая антенны, крыши, резервуары и другие выступающие части.
4.2.2 Высота молниеприемника над поверхностью крыши определяется в соответствии с требуемой категорией и радиусом молниезащиты.
4.2.3 Мачты антенн, находящиеся на крыше, должны быть соединены через искровой разрядник с токоотводной проводкой.
4.2.4 При расположении мачты телевизионной или другой антенны на расстоянии менее 10 метров от мачты молниеприемника, обе опоры на высоте крыши должны быть связаны между собой одножильным медным проводом площадью сечения не менее, чем проводников токоотвода. В этом случае также необходима установка молниеприемника на антенной мачте.
4.2.5 Расстояние молниеприемников до линий электропередачи должно быть не менее 3 м.
4.2.6 Каждый молниеприемник должен иметь не менее одного соединения с заземлением.
4.2.7 Токоотводная проводка должна быть соединена с заземляющим контуром здания.
4.2.8 Токоотводы должны быть закреплены к поверхности покрытий и к стенам. В зависимости от места проводки токоотводов расстояние между элементами крепления предусматривается следующим образом:
— для токоотводов на стенах, малоуклонной и скатной кровле:
по DIN V VDE V 0185 через каждые 0,5 м;
по NFC 17-102, NFC 17-100 не менее 3 держателей на каждый метр длины, т.е. с шагом 0,33 м;
по Российским нормам [1, 2] с шагом 1,5-2 м.
4.2.9 Каждый вертикальный токоотвод должен быть соединен с отдельной точкой заземления в соответствии с требованиями NF C 17-102 (таблицы 4-6), [2, 3].
4.2.10 В соответствии со стандартами DIN V VDE V 0185 (ч.3, п.4.4.1), [2, 3] сопротивление заземления должно быть не более 10 Ом.
4.2.11 При расположении точек заземления молниеотводов рядом с подземными кабелями электроснабжения или металлическими газопроводами должны соблюдаться меры предосторожности согласно требованиям NFC 17-102 (таблицы 4, 5). При этом заземление должно быть расположено на безопасном расстоянии от находящихся в земле инженерных коммуникаций (металлических трубопроводов, силовых кабелей, кабелей связи, газопроводов). Значения безопасных расстояний приведены в таблице 1. Эти расстояния должны соблюдаться и для трубопроводов, не соединенных с заземляющим контуром здания.
4.2.12 Для неметаллических трубопроводов безопасные расстояния не нормируются.
4.2.13 Для всех объектов, оборудованных молниезащитой в соответствии с требованиями международного стандарта CEI 61643-11, французского стандарта NF EN 61643-11 для защиты от перенапряжения обязательна установка разрядников типа 1 (DDS по NF EN 61643-11).
4.3 Требования к материалам
4.3.1 Используемые материалы и изделия должны быть сертифицированы или иметь соответствующие Технические свидетельства.
Таблица 1 — Безопасные расстояния до заземлителя
Минимальные расстояния до заземлителя, м
Сопротивление грунта >500 /м
Заземленные предохранительные трубы электрического кабеля
Незаземленные предохранительные трубы электрического кабеля
Система заземления линий электроснабжения
Молниезащита зданий, сооружений, оборудования и коммуникаций
Атмосферные явления с образованием молний, сопровождаемых яркими вспышками света, громом, называют грозами. Молнии – это грозовые разряды электричества, возникающие между облаками и Землей; внутри облаков.
Попадание молнии в дом
Опасность для жизни людей, сохранности промышленных, общественных строений, высотных инженерных сооружений – дымовых труб, антенн телевидения, радиосвязи, включая сотовую; вышек, опор электрических сетей; технологического оборудования, расположенного на открытых промышленных площадках, например, для ректификационных колонн предприятий нефтепереработки представляют молнии первого типа.
Необходимость устройства молниезащиты связана с тем, что напряжение при грозовых разрядах достигает 50 млн. В, а сила тока – до 100 тыс. А; с выделением огромного количества световой, звуковой и тепловой энергии. Грозовые разряды являются электрическими взрывами, сходными с детонацией, наносящими разрушения строениям, ломающими деревья, послужившие им источниками заземления; травмируют, контузят людей, что нередко приводит к их гибели.
Молниезащитой называют комплекс технических решений, что надежно обеспечивают безопасность людей, предохранение строений различного назначения, высотных объектов; технологического, инженерного оборудования производственных объектов; коммуникаций инфраструктуры населенных пунктов, линий электропередач как от прямых ударов грозовых разрядов, электромагнитной, электростатической индукции, так и от передачи электротока через металлоконструкции, коммуникации.
Заземление и молниезащита – это то, чем согласно нормам должны быть оборудованы промышленные здания, инженерные коммуникации, а также другие объекты. Кроме того, пункт 4 статьи 50 Федерального закона РФ №123-ФЗ предписывает в качестве одного из способов исключения источников зажигания устраивать защиту от молний для зданий, оборудования для повышения уровня пожарной безопасности на объектах.
Нормы устройства молниезащиты
Учитывая, что строения, сооружения, технологические установки, коммуникации довольно сильно отличаются по своему устройству, исполнению разработаны государственные, ведомственные, корпоративные нормы; стандарты, правила проектирования для организации оптимальной, эффективной защиты от грозовых разрядов для каждого типа объектов – от производственных объектов, где она впервые стала применяться, до жилых домов.
В основе норм, что регламентируют создание технической защиты от молний, опыт организации электрической безопасности строений разного вида, назначения, с учетом особенностей, присущих современным постройкам, сооружениям и коммуникациям инфраструктуры, связи.
Требования к молниезащите изложены во многих официальных документах. Проектирование, расчет молниезащиты ведется на основании следующей нормативно-технической базы:
- «Правил устройства электроустановок». В настоящее время действует седьмое и некоторые главы шестого издания этого основополагающего документа, без знания требований которого невозможно проектирование любых видов, типов электрических установок, оборудования, аппаратуры защиты от поражения электротоком, включая молниезащиту. Промышленная безопасность защищаемых объектов с категориями по взрывопожарной опасности помещений, зданий также невозможна без этого вида защиты от высоковольтных разрядов электрического тока. Это учитывают требования по организации, исполнению молниезащиты для различных видов строений, инженерных сооружений, электрических коммуникаций, указанные в нескольких главах ПУЭ. Главы 2.4, 2.5 – для воздушных линий электропередач с рабочим напряжением меньше и больше 1 кВ соответственно, включая карту районирования территории России с указанием длительности гроз в году, что необходимо при проектировании систем, устройств молниезащиты. Глава 4.2 – для распределительных устройств, электрических подстанций напряжением больше 1 тыс. В. Глава 4.3 – для преобразовательных подстанций, установок.
- РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий, сооружений». Ее предназначение видно из названия. Несмотря на то что документ утвержден еще Министерством энергетики Советского Союза, по согласованию с Госстроем, он действует и сегодня.
- Некоторые ее положения неизбежно устарели, не успевая за научно-техническим прогрессом, поэтому при проектировании современных технических систем, устройств защиты от грозовых разрядов пользуются российскими ГОСТ, идентичными стандартам Международной электротехнической комиссии; а также отечественными инструкциями по молниезащите, вышедшими в свет позднее.
- Один из этих документов СО 153-34.21.122-2003, разработанный тем же коллективом ученых, регламентирует устройство молниезащиты как строений, так и инфраструктурных коммуникаций.
- ГОСТ Р МЭК 62305-1-2010, ГОСТ Р МЭК 62305-2-2010, представляющие собой две части одного национального стандарта о менеджменте рисков при защите объектов от грозовых разрядов. В первой части сформулированы общие принципы, во второй – методики оценки рисков гибели, получения травм от поражения электротоком людей; полного/частичного разрушения объектов, общественных коммуникаций; экономических потерь от попадания молний.
- Важно, что при этом рассматриваются такие факторы, как пожарная безопасность, так как в расчетах учитываются пространства с огнеопасной средой – воздушной смесью паров горючих жидкостей, газов, пыли.
- ГОСТ Р МЭК 62561.1-2014. Это первая часть национального стандарта об элементах систем защиты от молний, касающаяся требований к их частям, соединениям.
- ГОСТ Р МЭК 62561.2-2014 – к проводникам, электродам заземления.
- ГОСТ Р МЭК 62561.3-2014 – к распределительным разрядникам.
- ГОСТ Р МЭК 62561.4-2014 – к элементам крепления.
- ГОСТ Р МЭК 62561.5-2014 – к смотровым колодцам, уплотнителям электродов заземления.
Требования к проектированию, устройству заземления, защиты от молний электроустановок, оборудования зданий, линий электропередач в СССР также устанавливал СНиП 3.05.06-85 об электротехнических устройствах. Сегодня действует свод правил, выпущенный как его актуализированная версия – СП 76.13330.2016.
Помимо норм, действующих на территории РФ, следуют упомянуть сходные требования к системам защиты от грозовых зарядов, применяемые в союзных государствах. В Республике Казахстан – это СП РК 2.04-103-2013 об устройстве молниезащиты объектов, вышедший взамен аналогичной инструкции СН РК 2.04-29-2005; в Республике Беларусь – технический кодекс ТКП 336-2011 о защите от молний объектов, инженерных коммуникаций.
Тип зон молниезащиты
Под системами защиты от молний объектов, инженерных, коммуникаций и технологического оборудования понимают внешние и внутренние технические устройства, позволяющие защитить их как от прямого воздействия ударов молний, так и от вторичных воздействий – электрических, электромагнитных полей, сопровождающий грозовой разряд.
Различают активные и пассивные системы защиты от молний.
Пассивная, способная перехватить молнию до ее разряда на конструкции строительного объекта, корпуса оборудования или части инженерного, коммуникационного сооружения, и отвести заряд в землю, состоит из следующих элементов:
- Приемника молний.
- Молниеотводов.
- Заземляющих устройств.
В активной системе к этим неотъемлемым элементам добавляются устройства, генерирующие восходящий поток ионов, притягивающий к себе грозовой разряд.
Проектируются, монтируются несколько видов систем молниезащиты – стержневая, тросовая, которые по результатам проведенных расчетов, в зависимости от количества стержней/тросов, их расстановки/расположения, конфигурации площади защиты, могут создавать два типа зон молниезащиты:
- А. Степень надежности защиты – от 99, 5%.
- Б – от 95%.
Виды систем молниезащиты
На практике, если строительный объект, технологическая установка, вышка, столб, антенна инженерных коммуникаций полностью находится в зоне защиты от попадания молний, вероятность их поражения грозовым электрическим разрядом стремится к нулю.
Классификация зданий и сооружений по устройству молниезащиты
Существуют следующие категории молниезащиты строительных объектов, зависящие от назначения, значимости, класса пожарной опасности и возможности взрыва; пожарной нагрузки – наличия, количества, вида взрывопожароопасных материалов; региональной частотности грозовых разрядов; зафиксированных попаданий молний:
- I категория, имеющая наивысший уровень защиты от возможного прямого попадания молний в объект. Это производственные объекты с наличием взрывоопасных зон классов опасности В-I, II. Тип зоны защиты – А.
- II категория. Это здания производственного, складского назначения, открытые площадки как с хранением ЛВЖ, ГЖ, так и с установленным на них технологическим оборудованием, где они обращаются; а также взрывоопасные производства, наружные установки классом опасности ниже В-Iа. Тип зоны защиты для технологического оборудования, установленного на открытых промышленных площадках – Б; для объектов – А или Б в зависимости от прогнозируемого количества грозовых разрядов в год.
- III категория. К ней относятся строительные объекты различного назначения III–V степеней стойкости к огню в районах, где годовая продолжительность гроз больше 20 часов. Основной тип молниезащиты – Б.
Определить все основные параметры системы защиты от попадания молний для любого конкретного объекта можно по таблице 1 РД 34.21.122.
Виды молниезащиты
Система молниезащиты в зависимости от категории объектов может быть нескольких видов:
- Защищающая от прямых ударов. Устройства, используемые для этого, называют молниеотводами, состоящими из несущей опоры, в качестве которой может служить сам строительный объект, приемника разряда, токоотвода и заземлителя. Применяют как стержневые, тросовые молниеотводы, так и металлическую сетку, уложенную на кровлю защищаемого объекта. Для воздушных линий электропередач используют грозозащитные тросы, принимающие разряд молнии.
- От электростатической индукции. Осуществляется путем подсоединения всего электрооборудования к системе заземления объекта.
- От электромагнитной индукции. Для этого в местах соединений устраиваются токопроводящие перемычки между участками трубопроводов, эстакад.
- От заноса электрического потенциала, вызванного грозовым разрядом. Для этого все входящие в здания, сооружения коммуникации, включая металлическую оболочку электрических кабелей напряжением до 1 тыс. В, заземляются. Воздушные линии электропередач на подходах к объекту оборудуют грозозащитными тросами, а на опорах монтируют разрядники, ограничители перенапряжения.
Средства и способы молниезащиты
К средствам защиты от грозовых разрядов электричества относят:
- стержневые приемники молний;
- грозозащитные тросы;
- сетчатые молниеприемники;
- токоотводы;
- контуры заземления строительных объектов.
Варианты исполнения молниезащиты бывают двух видов:
- Внешний, защищающий от прямого воздействия высокопотенциального электрического разряда, способного вызвать разрушения, взрывы и пожары, за счет его отвода в землю для рассеивания энергии.
- Внутренний. Для защиты от вторичных факторов прямого или близкого к защищаемому объекту удара молнии. Для этого используют различные типы специальных приборов, называемых УЗИП – устройствами защиты от импульсных перенапряжений.
Установка молниезащиты, испытание молниезащиты по окончании монтажных работ производится организациями, выполняющими электротехнические работы.
Эксплуатация молниезащиты не требует дополнительных затрат, рассчитана на длительный период. Но, осмотр молниезащиты на предмет обнаружения механических повреждений приемников разряда, токоотводящих, заземляющих элементов, связей между ними все же обязателен.
Проверка молниезащиты позволяет собственникам объектов, руководству предприятий, организаций быть уверенными, что она не подведет в опасный грозовой период.
Когда и как проводят проверку устройств молниезащиты?
Гроза как естественное природное явление сопровождается молниями, которые бьют преимущественно в высокие предметы. Большая энергия, которая присуща грозовым разрядам, при неудачных стечениях обстоятельств может привести к:
- разрушению элементов архитектурного объекта;
- выходу из строя электронной аппаратуры;
- возникновению пожара;
- гибели людей, а также сельскохозяйственных животных.
Единственный способ предотвращения этого — устройство молниезащиты. Назначение молниезащиты состоит в принудительном отводе тока атмосферного разряда прямо на землю по специально создаваемому для этого контуру заземления, что позволяет избежать его прямого воздействия на конструкции здания, животных и людей. Молниезащиту здания выполняют как отдельную инженерную систему. Исправность системы молниезащиты подтверждают регулярными проверками.
Кто проводит проверку?
Выдача заключение на соответствие системы молниезащиты промышленных зданий требованиям норм — технически сложная процедура, которую могут выполнять только специализированные организации.
Необходимые условия выдачи протокола проверки молниезащиты включают следующие положения:
- наличие у проверяющей организации тестирующей лаборатории, что дополнительно подтверждено свидетельством о регистрации;
- профильное образование сотрудников лаборатории;
- применение при тестировании измерительных приборов с действующей поверкой.
Лаборатория — это самостоятельная структурная единица организации с утвержденным штатным расписанием.
Монтажные компании обычно привлекают сертифицирующую лабораторию по субподряду.
Разновидности проверок
Проверки элементов молниезащиты вне зависимости от их исполнения делят на контрольные, внеочередные, разовые.
- Главные отличительные признаки контрольных проверок молниезащиты — их выполнение по полному циклу с измерением характеристик и по заранее согласованному плану.
- Внеочередные проверки обычно проводят визуальным осмотром после стихийных бедствий, а также особо сильных гроз. Измерения сопротивления при этом не выполняют.
- Разовые проверки молниезащиты различной глубины выполняют после:
- завершения монтажа системы;
- внесения в систему любых изменений, в т.ч. ремонта;
- повреждения защищаемого объекта.
Методика выполнения проверки
Система молниезащиты архитектурных сооружений, особенно промышленных объектов, часто имеет высокую сложность. Эта требует разделения процесса контроля ее текущего состояния на ряд этапов, которые выполняют по разнообразным методикам визуального и инструментального тестирования.
Этапы
Обычно в процессе сертификации системы молниезащиты выделяют такие этапы как:
- получение необходимых исходных данных из имеющейся проектной документации;
- контроль фактического соответствия системы проектной документации;
- визуальный осмотр устройств системы. Цель осмотра — контроль целостности сварных соединений (с простукиванием), отсутствия коррозии, состояния контактов;
- измерение сопротивления заземлителя.
В тех ситуациях, когда для защиты объекта применяют несколько молниеотводов, проверку производят отдельно для каждого из них.
Нормируемые параметры
Проверку молниезащиты объектов промышленного назначения (архитектурные сооружения плюс коммуникации) осуществляют на соответствие требованиям ведомственных инструкций РД 34.21.122-87 и СО 153-34.21.122-2003 Министерства энергетики. Положениями ПТЭЭП (гл. 2.8) нормируются принципы защиты электротехнических устройств от воздействия скачков напряжений.
Нормы фиксируют максимальное переходное сопротивление контактов молниезащиты на уровне 0,03 Ом. Максимальное сопротивление заземляющего устройства установлено равным 10 Ом.
При устройстве электроустановок дополнительно контролируют соответствие нормативным требованиям расстояния до объекта, величины углубления, а также конструктивного исполнения элементов заземляющего устройства в местах с различным сопротивлением грунта. Отдельно проверяют минимальное расстояние заземлителя от металлических коммуникаций.
Методы измерений
При инструментальном контроле молниезащиты выполняют такие разновидности измерения сопротивлений как:
- проверку переходного сопротивления контуров в местах стыка отдельных компонентов;
- определение сопротивления заземлителей защиты.
Достоверность результатов увеличивают тестированием заземляющих устройств на пике сухого сезона или при максимально глубоком промерзании грунта.
При визуальном контроле молниезащиты, который выполняют днем при ясной погоде, проверяют степень коррозии и иных повреждений поверхности и структуры компонентов системы. Если, например, при осмотре молниеприемников обнаружены те из них, у которых повреждено более четверти площади поверхности, они подлежат обязательной замене.
Документирование (акты, протоколы)
По результатам проверки какого-либо конкретного параметра или их комплекса оформляют протокол. Применительно к системе молниезащиты различают протоколы:
- визуального осмотра технического состояния системы и/или отдельных ее узлов;
- измерения переходного сопротивления;
- измерения сопротивления при испытаниях контура заземляющих устройств.
Протокол может составляться в отношении части системы, а также содержать результаты полного цикла обследований без разбиения на отдельные составляющие. В протоколах измерения, которые оформляют по ГОСТ Р 50571.16-99 (гармонизирован с МЭК 60364-6-61-86):
- отмечают условия измерений;
- приводят характеристику объекта;
- описывают тип тестирующего оборудования;
- фиксируют выявленные нарушения;
- отмечают данные лиц, производивших испытания.
Документ должен содержать всю информацию, необходимую для обоснования вывода по результатам испытаний по форме «годен — негоден» применительно к штатной технической эксплуатации.
Протоколы дополняют схемой организации молниезащиты, копиями свидетельств о поверке, актами аттестации сотрудников лаборатории и иными необходимыми документами. Образец формы протокола приведена на рисунке 1.
Рисунок 1. Примерная форма протокола измерения параметров системы молниезащиты
Акт отличается от протокола тем, что всегда составляется коллегиально. Комиссия по сложившейся традиции включает нечетное число (минимум трое) членов. Акт дополнительно утверждает руководитель заказчика или один из его заместителей.
Применительно к молниезащите оформляют акт проверки и акт приемки.
Акты проверки де-факто выполняют по форме протокола.
Акты приемки включают в себя протоколы измерений. Часто такой акт представляет собой обобщающий документ, содержательная часть которого полностью вынесена в приложения.
Необходимое измерительное оборудование и приборы
Качество установки молниеотвода проверяют соответствующей измерительной техникой. Доступны как автоматизированные измерители, так и приборы с ручной настройкой. Ручное оборудование считают устаревшим и постепенно выводят из эксплуатации.
Наибольшее распространение среди автоматизированных устройств проверки молниезащиты получил MRU-101 польского производства. Измеритель MRU-101:
- выполняет измерения сопротивления заземления;
- определяет удельное сопротивление геоподосновы;
- измеряет ток растекания;
- осуществляет выбор диапазона с необходимыми настройками после нажатия клавиши START;
- хранит несколько сотен результатов тестирования.
Сильная сторона MRU-101, интерфейс которого показан на рисунке 2, – постоянный контроль уровня шумов и условий измерений с полной остановкой процесса при обнаружении грубых ошибок. Кроме того, при определении прибором возможности получения недостоверных показаний он генерирует предупреждающее сообщение.
Рисунок 2. Органы управления, разъемы для подключения щупов и индикатор измерителя MRU-101
Для проведения испытаний молниезащиты чаще всего используют трехполюсную схему, структура которой показана на рисунке 3 с подключением рабочих входов H, S, E измерителя к трем разным вбитым в землю в районе электродов заземляющего контура измерительным щупам. Расстояние между щупами выбирают равным не менее 20 м.
Рисунок 3. Трех- и четырехполюсные схемы подключения прибора MRU-101 к измерительным щупам
Реже применяют четырехполюсную схему. Ее отличие от трехполюсной — соединение дополнительным проводом входа ES с тем же электродом, который подключен к входу E (см. рисунок 3).
MRU-101 позволяет измерить также величину тока растекания бесконтактным методом. Для этого к пятому входу так, как показано на рисунке 4, подключают измерительные клещи, которые входят в комплект поставки. Измерения требуют предварительной калибровки клещей, выполняемой в автоматическом режиме.
Рисунок 4. Схема подключения измерительных клещей к прибору MRU-101
Категории помещений и периодичность проверки
Правила эксплуатации электротехнического оборудования ПТЭЭП (гл. 2.8) по уровню защиты от ударов молний делят все архитектурные объекты на три категории.
Категория I включает в себя те объекты промышленного назначения, которые склонны к образованию скоплений пожаро- и взрывоопасных материалов в газообразной, парообразной или пылевидной форме. При том допустимо, что при нештатной ситуации может пострадать не только персонал предприятия, но и расположенные рядом сооружения.
Категория II отличается от предыдущей тем, что действия положений предназначенной для нее методики проверки распространяют на:
- архитектурные объекты, в которых скопление потенциально опасных сред возникает только при нарушениях технологии или неисправностях технологического оборудования;
- разнообразные внешние установки, использующие жидкие или газообразные взрывоопасные и/или пожароопасные материалы.
Прочее оборудование, безопасность которого обеспечивает система молниезащиты, отнесено к категории III. Его поражение молнией не так опасно или наносит меньший ущерб.
Периодичность проверки параметров системы молниезащиты с выдачей протоколов испытаний, которая установлена нормативными актами и относится к группе контрольных измерений, зависит от категории. Для категорий I, II это 1 год, для категории III – интервал периодической проверки составляет один раз в три года. Дополнительно замеры сопротивления годовых проверок следует осуществлять перед началом грозового сезона.
Внеочередные и разовые проверки выполняют по мере возникновения такой необходимости.
Раз в шесть лет оценивают степень коррозии заземлителей.
Как организовать заземление и молниезащиту дома и хозяйственных построек
Принципы обустройства защиты от молнии своими руками: коротко о главном
Если не вдаваться в технические подробности, молниезащитное устройство представляет собой проводник, который установлен над зданием. В его задачи входит прием удара молнии и отведение его разряда в землю, где он распределяется по площади через заземляющий контур.
Стержневая молниезащита дома и заземление защищают не только саму постройку, но и образует, так называемый конус безопасности, т.е. защищает еще и определенную территорию вокруг. Размеры безопасной зоны зависят от высоты установки молниеприемника. Если он расположен на уровне не выше 15 метров, то радиус основания конуса образуется углом в 45° от стержня.
Подобным образом рассчитывается защитный конус тросового горизонтального молниеотвода. Но здесь безопасный участок формируется треугольником, высотой в 85% расстояния от нижней точки провисания троса до грунта. Ширина площадки относится к высоте тросовой подвески как 1:1,67.
Требования к материалам
При монтаже системы молниезащиты высотой более 50 метров сечение стержня и токоотводов должно быть не менее 80 мм2. Для сборки конструкции наиболее приемлемыми материалами в плане экономичности считаются:
- Гладкая арматура сечением от 12 мм.
- Труба оцинкованная диаметром не менее 25 мм.
- Полоса стальная с параметрами 40х4 мм.
- Трос стальной сечением от 14 мм.
Параметры проводимости еще не все, проводники должны обладать высокой устойчивостью к ветровым нагрузкам. Для этих целей шпиль молниеотвода делают посекционным, с последовательными расширениями стержня в нижних ярусах. Тросовые растяжки нужно обеспечить промежуточными креплениями.
Подробная инструкция по надежному заземлению системы молниезащиты здания
Чтобы гарантированно обезопасить себя от электрического разряда молнии, понадобится решить две проблемы: поймать сам разряд и отправить его в безопасное место, а именно – заземлить. Для начала займемся заземляющей конструкцией.
Наиболее популярным сооружением для заземления принято считать три заглубленных проводника, расположенных по углам равностороннего треугольника. Но, как показывает практика, это не аксиома, важно, чтобы устройство обеспечивало безопасность. Судя по требованиям ПУЭ, основной параметр – сопротивление конструкции должно быть не более 4 Ом.
В среднем по стране таким условиям отвечают 3 заземляющих элемента, которые заглублены на 3-5 метров. Если же сопротивление будет больше 4 Ом, то допускается включение одного или нескольких дополнительных штырей. Эта мера поможет снизить сопротивление.
Размещение заземляющих элементов
Простое правило, которое никто не отменял, гласит: расстояние между проводниками должно как минимум соответствовать двойной глубине их забивания. Самый компактный вариант – равносторонний треугольник. Однако можно размещать штыри и в линию, инструкция по заземлению и молниезащите этого не запрещает, но при условии, если требования по расстоянию между ними соблюдены.
Еще один важный вопрос – материал элементов. Здесь на помощь опять приходит ПУЭ, где представлены три вида материалов: медь, черная и оцинкованная сталь. Для площади их сечения там также имеются конкретные требования:
- Диаметр круглой трубы из черной стали должен быть не менее 16 мм, медной и оцинкованной – 12 мм. В Правилах указан и уголок, но только из черной стали.
- Площадь поперечного сечения для черной стали 100 мм2 при толщине стенки 4 мм. Ограничения для оцинкованной стали – площадь поперечного сечения 75 мм2 при стенке в 3 мм. Соответственно для меди – 50 мм2 при 2 мм.
Арматура, как пытаются утверждать некоторые, не годится для организации заземляющего контура – она быстро ржавеет, а каленый верхний слой сказывается на электрических параметрах. Многие пытаются защитить металл от коррозии спецсредствами, но делать этого нельзя по той простой причине, что такое заземление абсолютно бесполезно. Ведь покрытие изолирует его элементы от грунта.
Как правильно соединить элементы заземления
Об идеальном решении говорить не приходится, но то, что соединение должно быть надежным и долговечным – не вызывает никаких споров. Черные металлы обычно соединяют при помощи электросварки, болты здесь будут слабым звеном – коррозия только нарушит проводимость. Без сомнения, сварной шов тоже не идеальное решение, но его можно обработать, только, понятное дело, не краской для дерева или винилового сайдинга.
Сваривать оцинковку нельзя – защитный слой на месте шва нарушается. Тут придется использовать специальные соединители, которые тоже изготовлены из оцинкованной стали. Подобным образом соединяют и медные элементы. Разумеется, есть для этого и технологии пайки, но обойдется такое удовольствие недешево.
Монтаж заземляющего контура системы молниезащиты: основные этапы
Итак, материал выбрали, со способом соединения определились, осталось смонтировать конструкцию. Для этого нужно выполнить ряд операций:
- Выбрать место для заземляющих штырей. Ближайший к фундаменту дома элемент должен находиться на расстоянии не менее 1 метра.
- В местах расположения штырей выкопать ямы глубиной 0,5-0,8 м, а затем соединить их канавами.
- Забить кувалдой заземляющие элементы чуть ниже начального уровня земли.
- Соединить штыри между собой при помощи ленты. Помним о площади поперечного сечения и толщине стальной пластины.
- Засыпать канаву землей и уплотнить.
Весьма желательно перед засыпкой проверить сопротивление конструкции. Помним, что оно не должно превышать 4 Ом.
Правила организации токоотвода
Конструктивно этот узел защиты не представляет ничего сложного, но он решает непростую задачу – отвод заряда от молниеприемника до заземления. Поэтому он должен быть безопасным и надежным, а для этого есть несколько правил:
- При монтаже своими руками токоотвода допускается использование круглого прута или проволоки из стали, алюминия и меди. Оцинкованная сталь – оптимальный вариант. Сечение для стали не менее 50 мм, для алюминия – 25 мм, для меди – 16 мм.
- Линия прокладки токоотвода должна проходить по кратчайшему пути между контуром заземления и молниеприемником. Количество соединений стоит минимизировать, а если без них не обойтись, то допускается пайка или болтовое крепление.
- Отвод крепят непосредственно на стены, если они из негорючего материала, то возможна прокладка на стене или внутри нее. Когда стена сделана из горючего материала, то токоотвод должен находиться на расстоянии не менее 100 мм от стены. Монтаж отвода недопустим в водосточных трубах, не имеет значения, пластиковый ли это водосток, или же металлический. Также линию стоит размещать подальше от оконных или дверных проемов.
- В качестве токоотвода ПУЭ допускают использование строительных конструкций, будь-то каркас здания или какие-либо другие элементы из металла. Арматура или металлическое фасадное покрытие толщиной не менее 0,5 мм также годятся для этих целей. Основное условие – непрерывная электрическая связь между элементами.
- Количество токоотводных линий громоотвода зависит от необходимой степени защиты, а также формы и размеров дома. Первая степень защиты (высшая) определяет среднее расстояние между отводами в 10 м, при четвертой степени защиты этот показатель составляет 25 м. Токоотводы соединяются параллельно, а это значит, что сила тока в каждом проводнике будет меньше. В результате при прохождении в нем заряда нагрев будет существенно ниже, соответственно снижается и пожарная опасность.
Молниеприемник стержневого типа в системе защиты дома от молнии
Конструкция стержневых приемников разряда молнии может быть разной. Их можно купить, а можно собрать и своими руками. Обычно длина устройства находится в пределах 3-15 метров, его пика должна находиться выше здания. Минимальная площадь сечения стержня зависит от материала: для стали это 50 мм2, для алюминия – 70 мм2, для меди – 35 мм2.
Многие утверждают, чем тоньше степень заточки пики, тем эффективнее будет работать молниезащита дома. Однако заряд молнии может разрушить или обжечь тоненький кончик, поэтому нужно найти какой-то компромисс.
Молниеприемник способен эффективно защищать определенную зону, которую можно легко определить:
- Визуально провести прямую линию от пики стержня до земли.
- Отметить от верхней точки вертикали угол 45 градусов и построить круговой конус.
Если постройка полностью накрыта конусом, то ее считают полностью защищенной. В случае, когда некоторые части находятся за границами защитной зоны, то возникает необходимость в дополнительном стержне. Вокруг него нужно построить свой конус защиты. Если дом полностью находится в зоне обоих конусов, то вопрос безопасности можно считать решенным.
Что еще нужно сделать
Итак, вы закончили монтаж заземления, установили молниеприемник и соединили их токоотводами, но расслабляться еще рано. Во-первых, нужно проверить работоспособность системы, измерив электрическую связь между элементами и сопротивление цепи.
Во-вторых, следует обязательно провести ревизию домашней электрической сети, иначе ни о какой эффективности громоотвода не может быть и речи. Скорее всего, придется провести ряд модернизаций внутренней сети дома. Обо всем этом, а также об организации защиты от перенапряжений поговорим в следующей статье.